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Abstract. We present a new parallel implementation of a divide and conquer algorithm for
computing the spectral decomposition of a symmetric tridiagonal matrix on distributed memory
architectures. The implementation we develop differs from other implementations in that we use
a two-dimensional block cyclic distribution of the data, we use the Löwner theorem approach to
compute orthogonal eigenvectors, and we introduce permutations before the back transformation of
each rank-one update in order to make good use of deflation. This algorithm yields the first scalable,
portable, and numerically stable parallel divide and conquer eigensolver. Numerical results confirm
the effectiveness of our algorithm. We compare performance of the algorithm with that of the QR
algorithm and of bisection followed by inverse iteration on an IBM SP2 and a cluster of Pentium
PIIs.
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1. Introduction. The divide and conquer algorithm for the symmetric tridiag-
onal eigenvalue problem was first developed by Cuppen [8], based on previous ideas
of Golub [16] and Bunch, Nielsen, and Sorensen [5] for the solution of the secular
equation. The algorithm was popularized as a practical parallel method by Dongarra
and Sorensen [14], who implemented it on a shared memory machine. They concluded
that divide and conquer algorithms, when properly implemented, can be many times
faster than traditional ones, such as bisection followed by inverse iteration or the
QR algorithm, even on serial computers. Later parallel implementations had mixed
success. Using an Intel iPSC-1 hypercube, Ipsen and Jessup [22] found that their
bisection implementation was more efficient than their divide and conquer implemen-
tation because of the excessive amount of data transferred between processors and
unbalanced work load after the deflation process. More recently, Gates and Arbenz
[15] showed that good speed-up can be achieved from distributed memory parallel
implementations. However, they did not use techniques described in [18] that guar-
antee the orthogonality of the eigenvectors and that make good use of the deflation
to speed the computation.

In this paper, we describe an efficient, scalable, and portable parallel implemen-
tation for distributed memory machines of a divide and conquer algorithm for the
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symmetric tridiagonal eigenvalue problem. We chose to implement the rank-one up-
date of Cuppen [8] rather than the rank-two update described in [15], [18]. We see no
reason why one update should be more accurate than the other or faster in general,
but Cuppen’s method, as reviewed in section 2, appears to be easier to implement.

Until recently, it was thought that extended precision arithmetic was needed in
the solution of the secular equation to guarantee that orthogonal eigenvectors are
produced when there are close eigenvalues. However, Gu and Eisenstat [18] have
found a new approach that does not require extended precision; Kahan [24] showed
how to make it portable and we have used it in our implementation.

In section 3 we discuss several important issues to consider for parallel imple-
mentation of a divide and conquer algorithm, and then we derive our algorithm.
We implemented our algorithm in Fortran 77 as production quality software in the
ScaLAPACK model [4] and we used LAPACK divide and conquer routines [25], [27]
as building blocks. The code is well suited to compute all the eigenvalues and eigen-
vectors of large matrices with clusters of eigenvalues. For these problems, bisection
followed by inverse iteration as implemented in ScaLAPACK [4], [10] is limited by
the size of the largest cluster that fits on one processor. The QR algorithm is less
sensitive to the eigenvalue distribution but is more expensive in computation and
communication and thus does not perform as well as the divide and conquer method.
Examples that demonstrate the efficiency and numerical performance are presented
in section 4.

2. Cuppen’s method. The spectral decomposition of a symmetric matrix is
generally computed in three steps: tridiagonalization, diagonalization, and back trans-
formation. Here, we consider the diagonalization T = WΛWT of a symmetric tridi-
agonal matrix T ∈ Rn×n, where Λ is diagonal and W is orthogonal. Cuppen [8]
introduced the decomposition

T =

(
T1 0
0 T2

)
+ ρvvT ,

where T1 and T2 differ from the corresponding submatrices of T only by their last and
first diagonal coefficients, respectively. Let T1 = Q1D1Q

T
1 , T2 = Q2D2Q

T
2 be spectral

decompositions. Then T is orthogonally similar to the rank-one update

T = Q(D + ρzzT )QT ,(2.1)

where Q = diag(Q1, Q2) and z = QT v. By solving the secular equation associated
with this rank-one update, we compute the spectral decomposition

D + ρzzT = UΛUT(2.2)

and then T = WΛWT with W = QU . A recursive application of this strategy to
T1 and T2 leads to the divide and conquer algorithm for the symmetric tridiagonal
eigenvalue problem.

Finding the spectral decomposition of the rank-one update D+ ρzzT is the heart
of the divide and conquer algorithm. The eigenvalues {λi}ni=1 are the roots of the
secular equation

f(λ) = 1 + ρzT (D − λ)−1z,(2.3)

and a corresponding eigenvector u is given by

u = (D − λI)−1z.(2.4)



PARALLEL DIVIDE AND CONQUER EIGENSOLVER 2225

Each eigenvalue and corresponding eigenvector can be computed cheaply inO(n) flops.
Unfortunately, calculation of eigenvectors using (2.4) can lead to a loss of orthogonality
for close eigenvalues. Solutions to this problem are discussed in section 3.3.

Dongarra and Sorensen [14] showed that the spectral decomposition (2.2) can
potentially be reduced in size. If zi = 0 for some i, then di = D(i, i) is an eigenvalue
with eigenvector the ith unit eigenvector ei, and if there are equal di’s, then the
eigenvector basis can be rotated in order to zero out the components of z corresponding
to the repeated diagonal entries. In finite precision arithmetic one needs to deflate
when a zi is nearly equal to zero and when there are nearly equal di’s for some suitable
definitions of “nearly” that ensure numerical stability is retained [14]. With suitable
deflation criteria, if G is the product of all the rotations used to zero out certain
components of z and if P is the accumulation of permutations used to translate the
zero components of z to the bottom of z, the result is

PG(D + ρzzT )GTPT =

(
D̃ + ρz̃z̃T 0

0 Λ

)
+ E,(2.5)

where ‖E‖2 ≤ cu, with c a constant of order unity and u the machine precision. This
deflation process is essential for the success of the divide and conquer algorithm. In
practice, the dimension of D̃+ρz̃z̃T is usually considerably smaller than the dimension
of D+ρzzt, which reduces the number of flops when computing the eigenvector matrix
of T . Cuppen [8] showed that deflation is more likely to take place when the matrix
is diagonally dominant When no deflation is assumed, the whole algorithm requires
4
3n

3 + O(n2). In practice, because of deflation, it appears that the algorithm takes
only O(n2.3) flops on average and the cost can even be as low as O(n2) for some
special cases (see [9]).

3. Parallelization issues and implementation details. Divide and conquer
algorithms have been successfully implemented on shared memory multiprocessors
[14], [23] but difficulties have been encountered on distributed memory machines [22].
Several issues need to be addressed. A more detailed discussion of the issues discussed
below can be found in [30].

3.1. Data distribution. The first issue, and perhaps the most critical step when
writing a parallel program, is how to distribute the data. Previous implementations
used a one-dimensional distribution [15], [22]. Gates and Arbenz [15] used a one-
dimensional row block distribution for Q, the matrix of eigenvectors, and a one-
dimensional column block distribution for U , the eigenvector matrix of the rank-one
updates. This distribution simplifies their parallel matrix-matrix multiplication used
for the back transformation QU . However, their matrix multiplication routine grows
in communication with the number of processes, making it not scalable.

By contrast, our implementation uses a two-dimensional block cyclic distribution
of the matrices. The block cyclic distribution is a generalization of the block and the
cyclic distributions. The processes of the parallel computer are first mapped onto a
two-dimensional rectangular grid of size Pr × Pc. Any general m× n dense matrix is
decomposed into mb×nb blocks starting at its upper left corner. These blocks are then
uniformly distributed in each dimension of the process grid. (See [4, Chap. 4] for more
details.) We chose this data layout for several reasons. For linear algebra routines
two-dimensional block cyclic distribution has been shown to be efficient and scalable
[7], [20], [26]. ScaLAPACK has adopted this distribution and our aim is to write a code
in the style of this software. Moreover, with this data layout, we can block partition
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our algorithm in order to reduce the frequency with which data is transferred between
processes and thereby to reduce the fixed startup cost incurred each time a message
is sent. Finally, the two-dimensional block cyclic distribution is particularly well
adapted for efficient and scalable parallel matrix-matrix multiplications. As shown in
section 3.4, these operations are the main computational cost of this algorithm.

3.2. Initial splitting. The second issue is the initial splitting of the work among
the processes. The recursive matrix splitting leads to a hierarchy of subproblems with
a data dependency graph in the form of a binary tree. If P = Pr ∗Pc is the number of
processes, this structure suggests that we distribute subproblems of dimension n/P
to each of the processes. At the leaves of the tree, each process solves its subproblem
independently. At each branch of the tree, the task is naturally split into two sets of
processes where, in each set, processes cooperate. At the top of the tree, all processes
cooperate. This is the way previous implementations have been done [15], [22]. This
approach has the advantage of offering a natural parallelism for the update of the
subproblems. However, Ipsen and Jessup [22] report unbalanced work load among the
processes when the deflations are not evenly distributed across the sets of processes
involved at the branches of the tree. In this case, the faster set of processes (those that
experience deflation) will have to wait for the other set of processes before beginning
the next merge. This reduces the speed-up gained though the use of the tree. A
possible issue concerning load balancing the work is dynamic splitting versus static
splitting [6]. In dynamic splitting, a task list is used to keep track of the various parts
of the matrix during the decomposition process and to make use of data and task
parallelism. This approach has been investigated1 for the parallel implementation of
the spectral divide and conquer algorithm for the unsymmetric eigenvalue problem
using the matrix sign function [2]. However, we did not choose this approach, because
in the symmetric case the partitioning of the matrix can be done arbitrarily and we
prefer to take advantage of this opportunity.

As we use the two-dimensional block cyclic distribution, it is now natural to
partition the original problem into subproblems of size nb, that is, the size of the
block distribution and not n/P as done in the previous implementations. Then, at
the leaves of the tree, processes that hold a diagonal block solve their own subproblems
of size nb×nb using the QR algorithm or the serial divide and conquer algorithm. For a
grid such that lcm(Pr, Pc) = 1, all the processes hold a subproblem at the leaves of the
tree [26] and then good load balancing of the work is ensured. When lcm(Pr, Pc) = Pr
or lcm(Pr, Pc) = Pc some processes hold several subproblems at the leaves of the tree
and some of them hold none. However, as the computational cost of this first step
is negligible compared with the computational cost of the whole algorithm, it does
not matter if the work is not perfectly distributed there, as our practical experiments
confirm. For a given rank-one update Q(D+ ρzzT )QT the processes that collaborate
are those that hold a part of the global matrix Q. As we go up in the tree, a process
can own data from more than one rank-one update and then has to participate in more
than one parallel computation. With the two-dimensional block cyclic distribution,
all the processes collaborate before the top of the tree [30]. As a consequence, work
is better load balanced during the computation than in previous implementations.

3.3. Orthogonal eigenvectors. The third issue is to maintain orthogonality
between eigenvectors in the presence of close eigenvalues. If λ̂ is an approximate root
of the secular equation (2.3) and we approximate the eigenvector u by replacing λ

1A ScaLAPACK prototype code is available at http://www.netlib.org/scalapack/prototype/.
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in (2.4) by its approximation λ̂, then when dj ≈ λ, even if λ̂ is close to λ, the ratio

zi/(dj − λ̂) can be very far from the exact one. As a consequence, the computed
eigenvector is very far from the true one and the resulting eigenvector matrix is far
from being orthogonal. There are two approaches that solve this problem and there
are trade-offs between them.

Sorensen and Tang [28] proposed using extended precision to compute the dif-

ferences dj − λ̂i. However, this approach is hard to implement portably across all
the usual architectures. There are many machine-dependent tricks to make the im-
plementation of extended precision go faster, but on some machines, such as Crays,
these tricks are not valid. This is the approach used by Gates and Arbenz [15] in
their implementation.

The Gu and Eisenstat approach is based on the Löwner theorem. They consider
that the computed eigenvalues are the exact eigenvalues of a new rank-one update,
leading to an inverse eigenvalue problem whose solution is easy to obtain. This ap-
proach can easily be implemented portably on IEEE machines and Crays using only
working precision arithmetic throughout, with a trivial bit of extra work in one place
to compensate for the lack of a guard digit in Cray add/subtract. This approach has
been adopted for LAPACK [1], [27].

The extra precision approach is “embarrassingly” parallel, with each eigenvalue
and eigenvector computed without communication, whereas the Löwner approach is
not. Indeed, the Löwner approach uses a formula for the solution of the inverse
eigenvalue problem that requires information about all the eigenvalues, requiring a
broadcast. However, the O(n) extra communication the Löwner approach uses is
trivial compared with the O(n2) communication of eigenvectors elsewhere in the com-
putation, so we chose this approach. In our implementation, we distribute the work
needed for the computation of the eigenvalues and the computation of the solution of
the inverse eigenvalue problem among the involved set of processes. Then solutions
are broadcast over this set of processes such that each process holds the necessary
information to update its own partial solution to the inverse eigenvalue problem and
then to compute its local part of the eigenvector matrix U .

3.4. Back transformation. The last issue concerns the transformation of the
eigenvectors of the rank-one update to the eigenvectors of the tridiagonal matrix T .
This is the main cost of the divide and conquer algorithm. Let D̃ + ρz̃z̃T be the
reduced rank-one update obtained after the deflation process as defined in (2.5) and

let (Ũ , Λ̃) be its spectral decomposition. Then(
D̃ + ρz̃z̃T 0

0 Λ̄

)
=

(
Ũ 0
0 I

)(
Λ̃ 0
0 Λ̄

)(
Ũ 0
0 I

)T
= UΛUT ,

and the spectral decomposition of the tridiagonal matrix T is therefore given by
T = Q(PG)TPG(D + ρzzT )(PG)TPGQT = WΛWT with W = Q(PG)TU . When
not properly implemented, the computation of W can be very expensive. Gu [17]
suggested a permutation strategy for reorganizing the data structure of the orthogo-
nal matrices before the back transformation. Although used in the serial LAPACK
divide and conquer code, this idea has not been considered in any current parallel im-
plementation of the divide and conquer algorithm. We derive a permutation strategy
more suitable for our parallel implementation. This new strategy is one of the major
contributions of our work.

To simplify the explanation of Gu’s idea, we illustrate it with a 4×4 example: we
suppose that d1 = d3 and that G is the Givens rotation in the (1,3) plane that zeros
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the third component of z. The matrix P is a permutation that moves z3 to the bottom
of z by interchanging elements 3 and 4. We indicate by “∗” a value that has changed.
Our aim is to take advantage of the block diagonal structure of Q = diag(Q1, Q2).
Note that if we apply the transformation (PG)T on the left, then the block structure
of Q is preserved:

Q·(PG)TU =


××
××
××
××

 (PG)T


×××
×××
×××

1

 =


××
××
××
××



∗ ∗ ∗ ∗
× ×× 0
∗ ∗ ∗ ∗
× ×× 0

 .

The product between the two last matrices is performed with 64 flops instead of the
2n3 = 128 flops of a full matrix product. However, if we apply (PG)T on the left, we
can reduce further the number of flops:

Q(PG)T · U =


∗ × ∗
∗ × ∗
∗ × ∗
∗ × ∗



×××
×××
×××

1

 = Q̃U.

At this step, a permutation is used to group the columns of Q̃ according to their
sparsity structure:

Q̃U =


∗ × ∗
∗ × ∗
∗ × ∗
∗ × ∗

 P̄ P̄T


×××
×××
×××

1

 =


× ∗ ∗
× ∗ ∗
× ∗ ∗
× ∗ ∗



∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

1

 = Q̄Ū .

Then, three matrix multiplications are performed with 48 flops involving the matrices
Q̄(1: 2, 1), Q̄(3: 4, 2), Q̄(1: 4, 3), and Ū(1: 3, 1: 3). (These are indeed matrices for larger
problems.) This organization allows the BLAS to perform three matrix multiplies of
minimal size.

In parallel, this strategy is hard to implement efficiently. One needs to redefine
the permutation P̄ in order to avoid communication between process columns. Let
k(q) be the number of deflated eigenvalues held by process column q, 0 ≤ q ≤ Pc − 1
and k

′
= min0≤q≤Pc−1 k(q). Then, in our parallel implementation, we define P̄ so

that it groups the column of Q according to their local sparsity structure and such
that the resultant matrix Q̄ has the following global structure:(

Q̄11 Q̄12 0 Q̄13

0 Q̄21 Q̄22 Q̄23

)
,

where Q̄11 contains n1 columns of Q1 that have not been affected by deflation, Q̄22

contains n2 columns of Q2 that have not been affected by deflation, (Q̄T13, Q̄
T
23)T

contains k
′

columns of Q2 that correspond to deflated eigenvalues (they are already
eigenvectors of T ), and (Q̄T12, Q̄

T
21)T contains the n− (n1 +n2 +k

′
) remaining columns

of Q. Then, for the computation of the product Q̄Ū , we use two calls to the parallel
BLAS PxGEMM involving parts of Ū and the matrices (Q̄11, Q̄12), (Q̄21, Q̄22). Unlike in
the serial implementation, we cannot assume that k

′
= k, that is, that (Q̄T13, Q̄

T
23)T

contains all the columns corresponding to deflated eigenvalues. This is due to the
fact that P̄ acts only on columns of Q that belong to the same process column. For
a particular block size nb, it is possible to construct an example where one process
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Table 3.1
Outline of the parallel divide and conquer code.

subroutine PxSTEDC( N, NB, D, E, Q, ... )

*

* Scale the tridiagonal matrix, call PxLAED0 to solve the tridiagonal

* eigenvalue problem, scale back when finished, sort the eigenvalues

* and corresponding eigenvectors in ascending order with PxLASRT.

subroutine PxLAED0( N, NB, D, E, Q, ... )

*

* Driver of the divide and conquer code. Split the tridiagonal matrix

* into submatrices using rank-one modification. Solve each eigenvalue

* problem with the serial divide and conquer code xSTEDC.

* Call PxLAED1 to merge adjacent problems.

TSUBPBS = (N-1)/NB +1

while (TSUBPBS > 1 )

for i = 1:TSUBPBS/2

call PxLAED1(N, NB, i, TSUBPBS, D, Q, ...)

end

TSUBPBS = TSUBPBS / 2

end

subroutine PxLAED1( N, NB, i, TSUBPBS, D, Q, ...)

* Combines eigensystems of adjacent submatrices into an eigensystem

* for the corresponding larger matrix.

*

* Form z=Q^Tv, the last row of Q1 and first row of Q2.

call PxLAEDZ( N, NB, i, TSUBPBS, Q, Z, ... )

*

* Deflate eigenvalues and permute columns of Q.

call PxLAED2( N, NB, i TSUBPBS, K, D, Q, Z, ... )

*

* Solution of the secular equation and computation of eigenvectors.

call PxLAED3( N, K, D, Z, U, ... )

*

* Back transformation.

call PxGEMM( Q1, U1, ...)

call PxGEMM( Q2, U2, ...)

*

does not deflate much and then no advantage of deflation is taken. However, we have
not encountered this situation in practice and we still get good speed-up on many
matrices.

3.5. The divide and conquer code. We give an outline of our parallel divide
and conquer code in Table 3.1 and for more details we refer to [30]. This code uses
LAPACK’s serial routines whenever possible. We use the PBLAS (parallel BLAS)
routine PxGEMM to perform our parallel matrix multiplications. This routine has a
communication cost that grows with the square root of the number of processes,
leading to good efficiency and scalability. All the communications are performed
using the BLACS (Basic Linear Algebra Communication subprograms) [13], whose
aim is to provide a portable, linear-algebra-specific layer for communication. The
BLACS are available for a wide range of distributed memory machines and for both
PVM (Parallel Virtual Machine) and MPI (Message Passing Interface). This makes
our divide and conquer code portable on many parallel platforms, including a network
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of workstations supporting PVM or MPI.

4. Numerical experiments. This section concerns accuracy tests, execution
times, and performance results. We compare our parallel implementation of the divide
and conquer algorithm with the two parallel algorithms for solving the symmetric
tridiagonal eigenvalue problem available in ScaLAPACK [4]:

• B/II: bisection followed by inverse iteration (subroutines PxTEBZ and PxHEIN).
The inverse iteration algorithm can be used with two options:
II-1: inverse iteration without a reorthogonalization process.
II-2: inverse iteration with a reorthogonalization process when the eigenvalues
are separated by less than 10−3 in absolute value.
• QR: the QR algorithm (subroutine PxSTEQR2) [10], [21].

PxSYEVX is the name of the expert driver2 associated with B/II and PxSYEV is the
simple driver associated with QR. We have written a driver called PxSYEVD that
computes all the eigenvalues and eigenvectors of a symmetric matrix using our parallel
divide and conquer routine PxSTEDC.

Our comparisons are based on three types of matrices. Matrix 1 has equally
spaced eigenvalues from u to 1, matrix 2 has geometrically spaced eigenvalues from u
to 1, and matrix 3 has clustered eigenvalues at u. The type 3 matrices are designed to
illustrate how B/II can fail to compute orthogonal eigenvectors. The tests were run on
an IBM SP2 in double precision arithmetic. On this machine, ε = 2−53 ≈ 1.1×10−16.

To verify the accuracy of our results, we measure the scaled residual error and
the scaled departure from orthogonality, defined by

R =
‖AQ̂− Q̂T Λ̂‖1

nε‖A‖1 and O =
‖I − Q̂T Q̂‖1

nε
,

where Q̂Λ̂Q̂T is the computed spectral decomposition of A. When both quantities
are small, the computed spectral decomposition is the exact spectral decomposition
of a slight perturbation of the original problem. Table 4.1 shows the greatest residual
and departure from orthogonality measured for matrices of type 1, 2, and 3 solved by
B/II-1, B/II-2, QR, and divide and conquer. The matrices are of order n = 1500 with
a block size nb = 60 on a 2 × 4 processor grid. For eigenvalues with equally spaced
modulus, bisection followed by inverse iteration gives good numerical results and is
slightly faster than the divide and conquer algorithm. This is due to the absence of
communication when computing the eigenvectors, both for B/II-1 and B/II-2. How-
ever, as illustrated by matrices of type 2, if no reorthogonalization is used, numerical
orthogonality can be lost with inverse iteration when the eigenvalues are poorly sepa-
rated. It is clear that the reorthogonalization process greatly increases the execution
time of the inverse iteration algorithm. For large clusters, the reorthogonalization
process in PxHEIN is limited by the size of the largest cluster that fits on one proces-
sor. Unfortunately, in this case, orthogonality is not guaranteed. This phenomenon is
illustrated by matrices of type 3. In the remaining experiments, we always use B/II
with reorthogonalization.

We compared the relative performance of B/II, QR, and divide and conquer. In
our figures, the horizontal axis is matrix dimension and the vertical axis is time di-
vided by the time for divide and conquer, so that the divide and conquer curve is

2“Driver” refers to the routine that solves the eigenproblem for a full symmetric matrix by
reducing the matrix to tridiagonal form, solving the tridiagonal eigenvalue problem, and transforming
the eigenvectors back to those of the original matrix.
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Table 4.1
Normalized residual, normalized eigenvector orthogonality, and timing for a matrix of size

n = 1500 on an IBM-SP2 (2 × 4 processor grid) for bisection/inverse iteration without and with
reorthogonalization, QR algorithm, and divide and conquer algorithm.

Matrix Eigensolvers
type B/II-1 B/II-2 QR DC

Uniform R 3× 10−4 3× 10−4 3× 10−4 2× 10−4

distribution O 0.20 0.17 0.55 0.27
[ε, 1] Time 52 52 120 58

Geometrical R 3× 10−4 3× 10−4 5× 10−4 4× 10−4

distribution O ≥ 1, 000 88.03 0.23 0.20
[ε, 1] Time 53 137 95 51

R 4× 10−4 4× 10−4 4× 10−4 4× 10−4

Clustered O ≥ 1, 000 ≥ 1, 000 0.50 0.16
at ε Time 52 139 120 47

constant at 1. It is clear from Figures 4.1 and 4.2, which correspond to the spectral
decomposition of the tridiagonal matrix T and the symmetric matrix A, respectively,
that divide and conquer competes with bisection followed by inverse iteration when
the eigenvalues of the matrix are well separated. For inverse iteration, this eigenvalue
distribution is good since no reorthogonalization of eigenvectors is required. For di-
vide and conquer it is bad since this means there is little deflation within intermediate
problems. Note that the execution times of QR are much larger. This distinction in
speed between QR or B/II and divide and conquer is more noticeable in Figure 4.1
(speed-up up to 6.5) than in Figure 4.2 (speed-up up to 2) because Figure 4.2 in-
cludes the overhead of the tridiagonalization and back transformation processes. As
illustrated in Figure 4.3, divide and conquer runs much faster than B/II as soon as
eigenvalues are poorly separated or in clusters. We also compare execution times of
the tridiagonalization, QR, B/II-2, and back transformation relative to the execution
time of divide and conquer. From Figure 4.4, it appears that when using the QR
algorithm for computing all the eigenvalues and eigenvectors of a symmetric matrix,
the bottleneck is the spectral decomposition of the tridiagonal matrix. This is not
true any more when using our parallel divide and conquer algorithm: spectral decom-
position of the tridiagonal matrix is now faster than the tridiagonalization and back
transformation of the eigenvectors. Effort as in [19] should be made to improve the
tridiagonalization and back transformation.

We measured the performances of PDSTEDC on an IBM SP2 (Figure 4.5) and on a
cluster of 300 MHz Intel PII processors using a 100 Mbit Switch Ethernet connection
(Figure 4.6). In our figures, the horizontal axis is the number of processors and
the vertical axis is the number of flops per second obtained when the size of the
problem is maintained constant on each process. The performance increases with the
number of processors, which illustrates the scalability of our parallel implementation.
These measures have been done using the Level 3 BLAS of ATLAS (Automatically
Tuned Linear Algebra Software) [31], which runs at a peak of 440 Mflop/s on the
SP2 and 190 Mflop/s on the PII. Our code runs at 50% of the peak performance of
matrix multiplication on the SP2 and 40% of the corresponding peak on the cluster of
P/II. Note that these percentages take into account the time spent at the end of the
computation to sort the eigenvalues and corresponding eigenvectors into increasing
order.
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Fig. 4.1. Execution times of PDTEBZ+PDSTEIN (B/II) and PDSTEQR2 (QR) relative to PDSTEDC

(DC), on an IBM SP2, using 8 nodes. Tridiagonal matrices, eigenvalues of equally spaced modulus.
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Fig. 4.2. Execution times of PDSYEVX (B/II), PDSYEV (QR), and PDSYTRD (tridiagonalization)
relative to PDSYEVD (DC), on an IBM SP2, using 8 nodes. Full matrices, eigenvalues of equally
spaced modulus.
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Fig. 4.3. Execution times of PDSYEVX (B/II), PDSYEV (QR), and PDSYTRD (tridiagonalization)
relative to PDSYEVD (DC), on an IBM SP2, using 8 nodes. Full matrices, eigenvalues of geometrically
spaced modulus.
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transformation) relative to PDSTEDC (DC). Measured on an IBM SP2, using 8 nodes. Tridiagonal
matrices, eigenvalues of geometrically spaced modulus.
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Fig. 4.5. Performance of PDSTEDC, IBM SP2.

5. Conclusions. For serial and shared memory machines, divide and conquer is
one of the fastest available algorithms for finding all the eigenvalues and eigenvectors
of a large dense symmetric matrix. By contrast, implementations of this algorithm
on distributed memory machines have in the past posed difficulties.

In this paper, we showed that divide and conquer can be efficiently parallelized
on distributed memory machines. By using the Löwner theorem approach, good
numerical eigendecompositions are obtained in all situations. From the point of view
of execution time, our results seem to be better for most cases when compared with the
parallel execution time of QR and bisection followed by inverse iteration available in
the ScaLAPACK library. Performance results on the IBM SP2 and a cluster of PC PIIs
demonstrate the scalability and portability of our algorithm. Good efficiency is mainly
obtained by exploiting the data parallelism inherent to this algorithm rather than its
task parallelism. For this, we concentrated our efforts on a good implementation of
the back transformation process in order to reach maximum speed-up for the matrix
multiplications. Unlike in previous implementations, the number of processes is not
required to be a power of two. This implementation will be incorporated in the
ScaLAPACK library.

Recent work [11] has been done on an algorithm based on inverse iteration which
may provide a faster and more accurate algorithm and should also yield an embarrass-
ingly parallel algorithm. Unfortunately, there is no parallel implementation available
at this time, so we could not compare this new method with divide and conquer.

We showed that in contrast to the ScaLAPACK QR algorithm implementation,
the spectral decomposition of the tridiagonal matrix is no longer the bottleneck. Ef-
forts as in [19] should be made to improve the tridiagonalization and the back trans-
formation of the eigenvector matrix of the tridiagonal form to the original one.

The main limitation of this proposed parallel algorithm is the amount of storage
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Fig. 4.6. Performance of PDSEDC, cluster of 300-MHz Intel PII processors using a 100-Mbit
Switch Ethernet connection.

needed. Compared with the ScaLAPACK QR implementation, 2n2 extra storage
locations are required to perform the back transformation in the last step of the
divide and conquer algorithm. This is the price we pay for using Level 3 BLAS
operations. It is worth noting that in most of the cases, not all this storage is used,
because of deflation. Unfortunately, ideas as developed in [29] for the sequential
divide and conquer seem hard to implement efficiently in parallel as they require a lot
of communication. As in many algorithms, there is a trade off between good efficiency
and workspace [3], [12]. Such a trade-off appears also in parallel implementations of
inverse iteration when reorthogonalization of the eigenvectors is performed.

In future work, the authors plan to use ideas developed in this paper for the
development of a parallel implementation of the divide and conquer algorithm for the
singular value decomposition.
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