Solutions to Introductory Problems

Equilateral triangle

$$\mathsf{D}_3 = \{I, R_{2\pi/3}, R_{4\pi/3}, r_0, r_{\pi/3}, r_{-\pi/3}\}.$$

1. We know, $R_{\alpha} = r_{\pi/3}r_0$ and $R_{\beta} = r_0r_{\pi/3}$. Therefore

$$R_{\alpha}R_{\beta} = r_{\pi/3}r_0r_0r_{\pi/3}r = r_{\pi/3}r_0^2r_{\pi/3} = r_{\pi/3}r_{\pi/3} = r_{\pi/3}^2 = I.$$

 r_0

2. The product (composition) $r_{\pi/3}r_0$ means first do the reflection r_0 then $r_{\pi/3}$. Consider the effect on the point *A*: under the reflection r_0 the vertex *A* remains at *A* (just *B* and *C* swap over). Then under $r_{\pi/3} A$ moves to *B*. Hence the overall effect of $r_{\pi/3}r_0$ and there is only one rotation that does that, namely $R_{2\pi/3}$. Since the questions tells us the product is a rotation, the answer is $r_{\pi/3}r_0 = R_{2\pi/3}$; that is, $\alpha = 2\pi/3$. [Note that there is no reason to use the point *A*, any vertex would work just as well.]

3. A similar approach shows $r_0 r_{\pi/3} = R_{-2\pi/3}$; that is, $\beta = -2\pi/3$ (or $4\pi/3$). For example, $r_{\pi/3}$ maps *A* to *B* and r_0 then maps *B* to *C*, so the overall effect is to map *A* to *C* and the only rotation that does that is $R_{-2\pi/3}$.

4. (a) The elements *I* and r_0 fix *A*.

5.

(b) The elements *I* and $r_{-\pi/3}$ fix *B*, and the elements *I* and $r_{\pi/3}$ fix *C*.

(c) The elements $R_{2\pi/3}$ and $r_{\pi/3}$ move *A* to *B*.

(d) $\{R_{2\pi/3}, r_{\pi/3}\}$ is not a subgroup (it doesn't contain the identity element for example). The other 3 are all subgroups (of order 2).

D_3	Ι	$R_{2\pi/3}$	$R_{-2\pi/3}$	<i>r</i> ₀	$r_{\pi/3}$	$r_{-\pi/3}$
Ι	Ι	$R_{2\pi/3}$	$R_{-2\pi/3}$	r_0	$r_{\pi/3}$	$r_{-\pi/3}$
$R_{2\pi/3}$	$R_{2\pi/3}$	$R_{-2\pi/3}$	Ι	$r_{\pi/3}$	$r_{-\pi/3}$	r_0
$R_{-2\pi/3}$	$R_{-2\pi/3}$	Ι	$R_{2\pi/3}$	$r_{-\pi/3}$	<i>r</i> ₀	$r_{\pi/3}$
r ₀	r ₀	$r_{-\pi/3}$	$r_{\pi/3}$	Ι	$R_{-2\pi/3}$	$R_{2\pi/3}$
$r_{\pi/3}$	$r_{\pi/3}$	r_0	$r_{-\pi/3}$	$R_{2\pi/3}$	Ι	$R_{-2\pi/3}$
$r_{-\pi/3}$	$r_{-\pi/3}$	$r_{\pi/3}$	r ₀	$R_{-2\pi/3}$	$R_{2\pi/3}$	Ι

6. (There is more than one correct answer to this.) First use the multiplication table to write $r_{-\pi/3} = R_{2\pi/3}r_{\pi/3}$. And then write $R_{2\pi/3}$ using just the required two reflections: $R_{2\pi/3} = r_{\pi/3}r_0$. Thus, combining these we get

$$r_{-\pi/3} = R_{2\pi/3}r_{\pi/3} = (r_{\pi/3}r_0)r_{\pi/3} = r_{\pi/3}r_0r_{\pi/3}.$$

(The other answer is $r_{-\pi/3} = R_{-2\pi/3}r_0 = (r_0r_{\pi/3})r_0 = r_0r_{\pi/3}r_0$.)

Symmetry of a square

Recall that

 $\mathsf{D}_4 = \{I, R_{\pi/2}, R_{\pi}, R_{-\pi/2}, r_0, r_{\pi/4}, r_{\pi/2}, r_{-\pi/4}\}.$

1. The multiplication table of D₄:

plication table of D_4 :						, C			D	
	D_4	Ι	R	R^2	R^3	r_0	$r_{\pi/4}$	$r_{\pi/2}$	$r_{-\pi/4}$	$r_{-\pi/4}$
-	Ι	Ι	R	R^2	R^3	r_0	$r_{\pi/4}$	$r_{\pi/2}$	$r_{-\pi/4}$	
_	R	R	R^2	R^3	Ι	$r_{\pi/4}$	$r_{\pi/2}$	$r_{-\pi/4}$	r_0	
_	R^2	R^2	R^3	Ι	R	$r_{\pi/2}$	$r_{-\pi/4}$	r_0	$r_{\pi/4}$	
	<i>R</i> ³	R^3	Ι	R	R^2	$r_{-\pi/4}$	r_0	$r_{\pi/4}$	$r_{\pi/2}$	
=	r_0	r_0	$r_{-\pi/4}$	$r_{\pi/2}$	$r_{\pi/4}$	Ι	R^3	R^2	R	
_	$r_{\pi/4}$	$r_{\pi/4}$	r_0	$r_{-\pi/4}$	$r_{\pi/2}$	R	Ι	R^3	R^2	
	$r_{\pi/2}$	$r_{\pi/2}$	$r_{\pi/4}$	r_0	$r_{-\pi/4}$	R^2	R	Ι	R^3	
_	$r_{-\pi/4}$	$r_{-\pi/4}$	$r_{\pi/2}$	$r_{\pi/4}$	r_0	R^3	R^2	R	Ι	

 $r_{\pi/2}$

B

 $r_{\pi/4}$

 r_0

For brevity we have written $R = R_{\pi/2}$, and then $R^2 = R_{\pi}$ and $R^3 = R_{3\pi/2} = R_{-\pi/2}$.

NB: recall that products should be interpreted as acting from right to left: *ab* means apply *b* first and then *a*. This is because we're talking about composition of functions (that is, $ab = a \circ b$, or ab(x) = a(b(x))).

2. Compare, term by term, the elements in the r_0 row with the elements in the r_0 column. Whenever corresponding elements are equal, the 'multiplying element' commutes with r_0 . For example, the third element of the column and row is $r_{\pi/2}$, and this implies $R^2 r_0 = r_0 R^2$. The answer is $C(r_0) = \{e, r_0, R_{\pi}, r_{\pi/2}\}.$

3. (a) The only elements that fix *A* are *e* and $r_{\pi/4}$, and these form a group (of course!) $G_A = \langle r_{\pi/4} \rangle$. Similarly $G_B = \langle r_{-\pi/4} \rangle$, and $G_C = G_A$, $G_D = G_B$.

$$\rho(e) = \begin{pmatrix} A & B & C & D \\ A & B & C & D \end{pmatrix} \qquad \rho(R_{\pi/2}) = \begin{pmatrix} A & B & C & D \\ B & C & D & A \end{pmatrix} \\
\rho(R_{\pi}) = \begin{pmatrix} A & B & C & D \\ C & D & A & B \end{pmatrix} \qquad \rho(R_{\pi/2}) = \begin{pmatrix} A & B & C & D \\ D & A & B & C \end{pmatrix} \\
\rho(r_0) = \begin{pmatrix} A & B & C & D \\ D & C & B & A \end{pmatrix} \qquad \rho(r_{\pi/4}) = \begin{pmatrix} A & B & C & D \\ A & D & C & B \end{pmatrix} \\
\rho(r_{\pi/2}) = \begin{pmatrix} A & B & C & D \\ B & A & D & C \end{pmatrix} \qquad \rho(r_{-\pi/4}) = \begin{pmatrix} A & B & C & D \\ A & D & C & B \end{pmatrix}$$

4.

5. $G_{AC} = \{e, R_{\pi}, r_{\pi/4}, r_{-\pi/4}\}$. This forms a subgroup of order 4 isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$ (the group has order 4 and contains no element of order 4, so it can't be isomorphic to \mathbb{Z}_4). NB, this subgroup of D₄ is *not* conjugate to D₂.

6. For the suggested example (using the permutations given in question 3)

$$\rho(r_{\pi/4})\rho(r_0) = \begin{pmatrix} A & B & C & D \\ A & D & C & B \end{pmatrix} \begin{pmatrix} A & B & C & D \\ D & C & B & A \end{pmatrix}$$
$$= \begin{pmatrix} A & B & C & D \\ B & C & D & A \end{pmatrix}$$

while $r_{\pi/4}r_0 = R_{\pi/2}$ (from multiplication table above) and

$$\rho(R_{\pi/2}) = \begin{pmatrix} A & B & C & D \\ B & C & D & A \end{pmatrix}$$

thus showing that $\rho(r_{\pi/4})\rho(r_0) = \rho(r_{\pi/4}r_0)$ as required.

7. Firstly, from the multiplication table one finds $r_{\pi/2} = r_{\pi/4}r_0r_{\pi/4}$ (Indeed every element of D_4 can be written in terms of r_0 and $r_{\pi/4}$ — that is, they generate the group). On the other hand, the group generated by r_0 and $r_{\pi/2}$ is

$$H = \langle r_0, r_{\pi/2} \rangle = \{I, R_{\pi}, r_0, r_{\pi/2}\}.$$

(This group is called D_2 , and is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.)

8. Here we just go through the multiplication table: for each element different from e, R_{π} , we need only find one other element with which it does not commute. For example r_0 and $R_{\pi/2}$ do not commute, and nor do $r_{\pi/2}$ and $r_{\pi/4}$ etc.