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Solutions for Chapter 6: Periodic Motion

Qu 6.1: Use the property of uniqueness of solutions of ODEs to show that if y is a solution for
which thereis a T > 0 such that y(T) = y(0) then y(¢+ T) = y(¢) forall t e R.

I Solution Write the ODE asx = f(x), and let xo = y(0). The solution after time ¢ of the ODE with
: initial value x is y(#). Now consider the function 6(t) =y (¢ + T). First 6(0) = y(T) = y(0) = xo,
: and secondly

: S')=y'(t+T)=fly(t+ 1) = f(6(1)).

|

[

[

That is, 6(¢) also satisfies the ODE, with the same initial condition as y(#) and therefore, by
uniqueness of solutions, 6 (¢) =y (). Thatis, y(t + T) = y(¢), as required.

Qu 6.2: Consider a system of 4 identical coupled cells with symmetry D4. Draw the cell diagram
for such a system. Let y(#) be a periodic orbit with symmetry Z, generated by ((123 4), %) €S5yxS!
and period T. State the relation between the cells after a quarter of a period. If x; (#) = sin(¢) (with
T = 2m), deduce the form of x;() for j = 2,3, 4. Plot the graphs of the 4 functions x;(¢), on the same
diagram.

Solution Now the action of permutations imply (123 4)-(x1, X2, X3, X4) = (X4, X1, X2, X3). There-
fore, the spatio-temporal symmetry implies (recall g-x(t) =x(¢ + thetaTp))

X1 (t)=x2(t+m/2) etc.

If x1(¢) =sint, then x,(¢) = sin(t—mn/2) = —cos t, x3(t) = sin(t—m) = —sin ¢ and x4 () = sin(¢—
3m/2) =cost.
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Qu 6.3: Consider a system of 3 identical coupled cells with symmetry S3. Draw the cell diagram
for such a system. Let y(t) be a periodic orbit with symmetry Z, generated by ((1 2), %) € S3x St
and period T. State the relation between the 3 cells after half a period, and deduce the period of
cell 3.

Solution Write y () = (x1 (1), x2(), x3(¢)). The fact that ((1 2), %) €2y, the symmetry group of
7Y, is equivalent to y (¢ + T/2) = (1 2)y(¢), which translates to

|

|

:

| G (E+T12), xo(t+ T/2), x3(t+T12) = (12)(x1(8), X2(0), x3(8))
| = (D), x1(0), x3().

|
|
|

Since therefore x3(¢ + T/2) = x3(¢) it follows that x3 has period T/2 (rather than T).

Qu 6.4: By considering the subgroups of G = Dy =~ Z, x Z, and all possible homomorphisms from
these to S! = R/Z, find all possible symmetry groups of periodic orbits in a system with D, sym-
metry. [Hint: there are 5 subgroups, and these have 1, 2, 2, 2 and 4 homomorphisms respectively
giving 11 possible symmetry groups in all.]

Solution There are three copies of Z, in D, one generated by ry another by r;,» and the third
by Ry. Call these, D1, D and C, respectively. Then the subgroups of D, are

1, DI) D,]) CZ» DZ-
For each of these we need to consider all homomorphisms into S*.
1: Here there is only one homomorphism, namely ¢(e) = 0.

Z,: To take each of the order two subgroups together, let k be their generator (so x = ry in
the first and R, in the last). Let ¢ : Z, — S! be a homomorphism. Since k2 = e it follows
that 2¢(x) = 0:

[Recall that S! is written additively, so gb(K2) =2¢(x)).]

There are therefore two possible homomorphisms: ¢(x) = 0 or ¢(x) = % The first leads
to symmetry group Z, and the second to Z,. This should be applied to each of the
subgroups of order 2.

D,: Finally we take H = D, = {I, g, /2, Ry}, and let ¢ : D, — S! be a homomorphism. Let
k be any of the order 2 elements. Then ¢(x) =0 or ¢(x) = % (like before). Note also that
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: d(K1K2) = P(x1)p(x2), and therefore if Pp(x) = Pp(x2) = % then ¢(x1x2) = 0. There are
|
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therefore 4 possibilities, listed below

‘ 1 10 Tarz Ry
¢$o |0 O 0 0
¢ |0 1/2 1/2 0
¢ |0 1/2 0 1/2
¢$3 |0 0 1/2 1/2

The first gives symmetry group Dy, the other three all versions of D,, which we could
~1 =2 =3 .
call D, , D, and D, respectively.

Conclusion: there are the following 11 possible symmetry groups:

ﬂ» Dl’ D:’ Dll’ I/jz’ CZ» G» DZ» DVZI) DVZZ) DVZS-

Qu6.5: Repeat Example 6.10, but for the D4 action on R?, showing the existence of periodic orbits
with symmetries shown in Figure 6.1 (b).

| Solution Lefttoyou...

Qu6.6: Find all 27 complex-axial symmetry groups of the action of T; on R® described in Section

4.5.
Solution The full solution is very lengthy: I will illustrate it with one case and some comments
010
at the end. Begin by considering the subgroup Z3 generated by the matrix R; = |0 0 1
1 00

(this rotates by 27/3 about the vertex (1,1,1)). This matrix has eigenvalues 1,e27/3 The
eigenvalue 1 has eigenvector (1,1, 1) so corresponds to the fixed point space in C3 where x =
y = z, and these points are fixed by Z3 < Z3 x S.
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| The elgenvalues eiz”'/g’ are more interesting:
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Qu 6.7: Suppose G acts on R” and let X denote the space of all continuous maps y : S — R".
There is an action of G x S! on this space: if y € X then define (g,60) - y to be the map,

(&0 -y)=g (y(t-0).

Verify that this defines an action, and show that the stabilizer of an element vy is precisely its sym-
metry group X,.

Solution Let (g,0) and (h,¢) € G x S'. We need to show the purported action satisfies
(£,0)-((h,¢)-y)=(gh,0+¢)-7. (%)

To see this, firstlet 6 = (h,¢) -y, which means 6(s) = h-y(s—¢). Then the left-hand side of (*)
is

(&0) - ((hd)-y) (0

((g,6)-6)(1)
g-0(t-0)
g-(h-y(t—0-¢).

On the other hand, the right-hand side of (x) is

(gh,0+¢)-y = (gh)-y(t—©©+¢)),
g (h-y(t—0-¢))

showing that indeed (*) is correct. And since this holds for all (g,0) and (h,¢) e Gx S 1 this is
indeed an action.

For the second part, lety : S' — R", and let T = (G x S?) y be its stabilizer for this action. Let
(g,0) €I'. Then, by the definition of a stabilizer,

((g,(?) 'Y) (1) =y(1).
Using the definition of the action, this becomes
g-y(t=0)=y(1).

But this is precisely the definition of the elements of Z,, so we are done.
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