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Solutions for Chapter 5: ODEs

Qu 5.1: Let Z2 = 〈r 〉 act on R by r · x = −x. Show that the differential equation ẋ = sin(2x) has

symmetry group Z2. Let x(t ) be the solution with initial value x(0) = 1, and let u(t ) be the solution

with initial value u(0)=−1. How are x(t ) and u(t ) related?

Solution The symmetry follows because sin is an odd function: sin(−2x) = −sin(2x). Since

u(0) =−x(0) it follows that u(t )=−x(t ) (for all t in the domain of x).

Qu 5.2: Let D3 be the usual dihedral subgroup of order 6 of O(2), generated by r0 and R2π/3. Con-

sider the system of ODEs
{

ẋ = x +x2 − y2

ẏ = y −2x y

(a) Show this system has D3 symmetry.

(b) List all three axial subgroups of D3. By choosing one of these, find all equilibria of this sys-

tem with axial symmetry, and explain briefly why it is enough to consider only one of the axial

subgroups.

Solution (a) Write this as ẋ = f (x) where f (x, y) =
(

x +x2 − y2

y −2x y

)

. We need to show f is equiv-

ariant, for which it suffices to check f (g · x) = g · f (x) for each generator of the group. Now

D3 = 〈R2π/3 r0〉, so we show this equivariant for g = r0 and g = R2π/3 in turn. There are two

ways of doing this. The first is a lengthy calculations, and the second is a trick using complex

numbers. If you like complex numbers, you can skip the first part.

Lengthy but straightforward calculation: First g = r0. Now r0(x, y) = (x,−y), so

f (r0(x, y))= f (x,−y)=
(

x +x2 − y2

−y +2x y

)

.

On the other hand

r0 f (x, y)=
(

1 0

0 −1

)(

x +x2 − y2

y −2x y

)

=
(

x +x2 − y2

−y +2x y

)

.

Therefore f (r0 ·x) = r0 f (x).

Now consider g = R2π/3 =
(

−1
2 −

p
3

2p
3

2 −1
2

)

(see Chapter 2). Then

f (R2π/3x) = f (−1
2 x −

p
3

2 y,
p

3
2 x −

1

2
y) =

(

(−1
2

x −
p

3
2

y)+ (−1
2

x −
p

3
2

y)2 − (
p

3
2

x − 1
2

y)2
p

3
2 x − 1

2 y −2(−1
2 x −

p
3

2 y)(
p

3
2 x − 1

2 y)

)

=
(

−1
2

x −
p

3
2

y − 1
2

x2 +
p

3x y + 1
2

y2
p

3
2 x − 1

2 y +
p

3
2 x2 +x y −

p
3

2 y2

)

,

and we find R2π/3 f (x, y) gives the same result. Thus f is indeed D3 equivariant, and it follows

that the system of ODEs has D3 symmetry.

JM, 27-03-2020 © University of Manchester



SYMMETRY IN GEOMETRY AND NATURE 2

Calculation using complex numbers Treat R2 as C via z = x + i y, then f becomes f (z) = z + z2 (you can

check), r0(z)= z and R2π/3z = e2πi/3z. Equivariance then becomes checking that

f (z) = f (z), and f (e2πi/3z)= e2πi/3 f (z),

which is left to you.

(b) Recall that axial subgroups are those with 1-dimensional fixed point spaces. Since D3 is

acting on the plane, we are looking at lines of reflection. Since there are 3 lines of reflection,

there are 3 axial subgroups:

H1 = 〈r0〉, H2 = 〈rπ/3〉, and H3 = 〈r−π/3〉.

Choosing the axial subgroup H1, we have Fix(H1) = x-axis. On the x-axis, y = 0 and the system

becomes,

ẋ = x +x2, ẏ = 0.

The equilibria occur when x + x2 = 0, so when x = 0 and when x =−1. And since y = 0, these

equilibria are at (0,0) and (−1,0).

The other equilibria with axial symmetry are obtained by rotation from the ones in Fix(H1).

There are therefore two other equilibria, at

(

1
2 ,

p
3

2

)

, and
(

1
2 , −

p
3

2

)

.

Rotation by 2π/3 and 4π/3 map one line of reflection to each of the two others, and the three

equilibrium points outside the origin form a single orbit. This is closely related to the fact that

the subgroups H1, H2 and H3 are all conjugate (eg H2 =R2π/3H1R−1
2π/3, compare with Proposi-

tion 1.6).

Qu 5.3: Let L be an n ×n matrix, and consider the first order ODE ẋ = Lx on R
n . Show this is

equivariant for a linear action of a group G if and only if L commutes with all the matrices in the

representation of G .

Solution This is straightforward: we have f (x) = Lx. Now, f is equivariant if and only if

ρ(g ) f (x) = f (ρ(g )x) (using ρ to make the representation explicit), for all x and all g . That

is,

ρ(g )Lx = Lρ(g )x, (∀x,∀g ).

Since this equation holds for all x the two matrices ρ(g )L and Lρ(g ) must be equal, which is to

say that ρ(g ) and L commute (for all g ∈G).

Qu 5.4: Consider the following family of system of ODEs in the plane

{

ẋ = ax +x2 − y2

ẏ = a y −2x y

Here a ∈R is a parameter. This is similar to a previous question, and the system has D3 symmetry.

Describe the bifurcations of equilibrium points that occur on the lines of symmetry as a is varied

through a = 0.
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Solution One of the lines of symmetry is the x-axis, or y = 0. On this line the differential

equation becomes

ẋ = ax +x2.

Equilibria occur when the right-hand side vanishes, so when x(a + x) = 0. For a = 0 there is

only one equilibrium (at x = 0). For all a 6= 0 there are two equilibria: at x = 0,−a.

Qu 5.5: Consider the similar system with symmetry D4:

{

ẋ = x +x3 −3x y2

ẏ = y −3x2 y + y3.

(a) Show this system has D4 symmetry.

(b) List all axial subgroups ofD4, and find all equilibria of this system with axial symmetry. (Explain

briefly why in this case it is not enough to consider only one of the axial subgroups.)

Solution (a) We need to show that f (x, y) = (x + x3 −3x y2, y −3x2 y + y3) is equivariant. To

this end, we show it satisfies f (g (x, y)) = g ( f (x, y)) for g being each generator of D4 (this is an

easier calculation that for the D3 equivariance of the previous question).

For r0(x, y)= (x,−y),

f (r0(x, y)) = f (x,−y) = (x +x3 −3x(−y)2, (−y)−3x2(−y)+ (−y)3), while

r0( f (x, y)) = (x +x3 −3x y2, −y +3x2 y − y3).

and these are equal.

For g = Rπ/2, recall that Rπ/2(x, y) = (−y, x), and so

f (Rπ/2(x, y)) = f (−y, x) = ((−y)+ (−y)3 −3(−y)x2, x −3(−y)2x +x3)

Rπ/2( f (x, y)) = (−(y −3x2 y + y3), x +x3 −3x y2)

and again, these are equal. It now follows that the system of ODEs has D4 symmetry.

There is also a proof using complex numbers similar to the argument of Problem 5.2. In this case f (z) =
z + z3.

(b) Recall that axial subgroups are those with 1-dimensional fixed point spaces. Since D4 is

acting on the plane, we are looking at lines of reflection. There are 4 lines of reflection, and

hence there are 4 axial subgroups:

H1 = 〈r0〉, H2 = 〈rπ/2〉, H3 = 〈rπ/4〉, and H4 = 〈r−π/4〉.

Note that H1 and H2 are conjugate, and H3 and H4 are conjugate. Choosing the axial subgroup

H1, we have Fix(H1) = x-axis. On the x-axis, y = 0 and the system becomes,

ẋ = x +x3, ẏ = 0.

The only equilibrium on the x-axis is therefore the origin.

Now consider H3. The fixed point space is the line y = x. Substituting this into the ODE gives

ẋ = x −2x3.
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The equilibria therefore occur at x = y =±1/
p

2 (and the origin).

Conclusion: the axial equilibria are the origin and the 4 vertices of a square:

(0,0),
(

1p
2

, 1p
2

)

,
(

− 1p
2

, 1p
2

)

,
(

− 1p
2

, − 1p
2

)

,
(

1p
2

, − 1p
2

)

.

Qu 5.6: Check that the two systems in Examples 5.4 have symmetry S3 and Z4 respectively.

Solution Left to you . . .

Qu 5.7: Consider the following system of ordinary differential equations,







ẋ = −x + y z2

ẏ = −y +xz2

ż = z(1+x y − z2).

(∗)

Consider the action of the group G ≃Z2 ×Z2 ×Z2 generated by the matrices

A =





−1 0 0

0 −1 0

0 0 1



 , B =





1 0 0

0 1 0

0 0 −1



 , C =





0 1 0

1 0 0

0 0 1



 .

(i). Show that the matrices A,B ,C do indeed generate a group isomorphic to Z2 ×Z2 ×Z2 (you

need to show that A2 = I etc, and A,B ,C all commute).

(ii). Show that the system (∗) has symmetry G .

(iii). Deduce that the x-y plane and the z-axis are each invariant under the evolution of the sys-

tem, stating carefully any results used.

(iv). Can you find other invariant subspaces?

(v). Find all the equilibrium points that lie on these subspaces.

(vi). Find the unique solution to this system with initial value (x, y, z) = (1,1,0). What is the limit

as t →∞ of this solution?

Solution

(i). This is just a calculation; show A2 = I , AB = B A etc.

(ii). It is enough to check equivariance for the three generators A,B and C . Let

f (x, y, z) =
(

−x + y z2, −y +xz2, z(1+x y − z2)
)

.

We want to check f is equivariant. First with A:

f (A(x, y, z)) = f (−x,−y, z) = (x − y z2, y −xz2, z(1+x y − z2))T ,

A f (x, y, z) = (−(−x + y z2), −(−y +xz2), z(1+x y − z2))T ,

and these are equal. A similar calculation can be done for B and C .
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(iii). The x-y plane is fixed by Z
B
2 := 〈B〉, while the z-axis is fixed by the subgroup 〈A,C〉 of

order 4. By the conservation of symmetry theorem [fill in the statement. . . ], both are

invariant under the evolution of the system.

(iv). There are several other fixed point spaces:

subgroup fixed point space

G {0}

Z
C
2 := 〈C〉 the plane x = y

〈B ,C〉 the line y = x, z = 0

〈AC〉 the plane y =−x

〈AC ,B〉 the line y =−x, z = 0

(v). For example, for Fix(ZB
2 ) (defined above), we can put z = 0 into the equation to see that

the equilibria occur at −x = 0,−y = 0, so at the origin only. On Fix(〈A,C〉) (the z-axis), we

put x = y = 0 and have z(1− z2) = 0, so giving three equilibria: (0,0,0) (which we already

know), (0,0,1) and (0,0,−1). The others are as follows:

subgroup equilibria

G (0,0,0)

Z
C
2 := 〈C〉 (0,0,0), (0,0,1) and (0,0,−1)

〈B ,C〉 (0,0,0)

〈AC〉 (0,0,0), (0,0,1) and (0,0,−1)

〈AC ,B〉 (0,0,0).

(vi). This initial point x0 = (1,1,0) lies in Fix(H ) where H = 〈B ,C〉. The solution will therefore

(by the conservation of symmetry theorem) lie entirely in this subspace, so will satisfy

x = y and z = 0 throughout. We therefore only need solve the single equation

ẋ =−x

(putting z = 0 in the first equation), and with initial value x0 = 1. This has solution

x(t )= e−t . The solution is therefore

γ(t ) = (x(t ), y(t ), z(t ))= (e−t , e−t , 0).

As t →∞ so γ(t ) → (0,0,0).
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Qu 5.8: The octahedral groupOh is the group of all symmetries of the cube (including reflections).

With vertices at the 8 points (±1, ±1, ±1), it is generated as follows.

x

y

z
Generators:

Rz =





0 −1 0

1 0 0

0 0 1





Rd =





0 0 1

1 0 0

0 1 0



,

rz =





1 0 0

0 1 0

0 0 −1





Here Rz is a rotation about the z-axis by π/2, Rd is a rotation by 2π/3 about the diagonal x = y = z,

and rz is the reflection in the x-y plane.

Consider the following family of potential functions in 3-D:

V =λ
(

x2 + y2 + z2
)

−2
(

x4 + y4 + z4
)

+3
(

x2 y2 + z2x2 + z2 y2
)

,

(this is an approximation to the system of 8 identical springs each attached to the vertex of a cube,

and all attached to a common particle).

(i) Show V has symmetry Oh (it is enough to show it is invariant under the 3 given generators).

(ii) Show that the lines L1 = {(0,0, z) | z ∈R} and L2 = {(x, x,0) | x ∈ R}, and L3 = {(x, x, x) | x ∈ R}, are

all 1-dimensional fixed point spaces, and find the corresponding axial subgroups. [Hint: sketch

each of these lines on the figure with the cube.]

(iii) Find critical points (equilibria) occurring in these 1-dimensional fixed-point subspaces, and

describe how these appear/disappear as λ varies (i.e., the bifurcations involved).

(iv) Find the other 1-dimensional fixed point spaces (all others are equivalent under the summery

group Oh to L1,L2 or L3), and list the corresponding equilibrium points.
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Solution (i) Just a check!

(iii) Each point of the z-axis L1 is fixed by rotations about the z-axis, so by Rz , also by those

reflections preserving the z-axis, such as (x, y, z) 7→ (−x, y, z). Looking down the z-axis at the

cube, the z-axis will map to the origin and the symmetry group will be D4. The matrices are

the 3×3 matrices of the form
(

A 0

0 1

)

with A ∈ D4. It’s important to note not just that the points o f the z-axis are fixed by this

subgroup, but that they are the only points fixed by this subgroup.

Each point of L2 is fixed by the rotation by π about the line x = y, z = 0 as well as the reflection

rz in the x y-plane, giving a subgroup isomorphic to Z2 ×Z2.

For L3: the points on the diagonal are fixed by the rotation Rd , which generates a subgroup of

order 3 of Oh . There are also some reflections exchanging vertices adjacent to (1,1,1). Indeed,

looking down the diagonal of the cube, we see a 3-fold (i.e., triangular) symmetry, and the

symmetry group is a subgroup isomorphic to D3, generated by the rotation Rd and a reflection

such as (x, y, z) 7→ (y, x, z).

(iii) V always has a critical point at the origin (either by direct calculation, or because Fix(Oh ,R3) =
{0}). The Hessian of V at the origin is 2λ I3. Thus, V has a local minimum there when λ > 0

and a local maximum when λ< 0. When λ= 0 the critical point is degenerate, and bifurcations

may occur.

On the z-axis (or similarly on the other coordinate axes) we have

V (0,0, z) =λz2 −2z4

and the critical points occur at z = 0 (the origin) and z2 =λ/4, so at

z =±1
2

p
λ.

These occur for λ> 0, and form a pitchfork bifurcation. Identical bifurcations occur along the

other axes (illustrating the importance of conjugate subgroups).

On the axes through the vertices, we have, for example, x = y = z. Then

V (x, x, x) = 3λx2 +3x4.

Apart from the origin, the critical points occur when λ−2x2 = 0, and so at

x =±
p
−λ/2.

This (in contrast to the previous case) is real when λ< 0.

Finally, for the axes through the midpoints of opposite edges: one such axis is in the x-y plane,

with y = x:

V (x, x,0) = 2λx2 −x4.

This time, apart from the origin, the critical points occur when λ−x2 = 0, so here

x =±
p
λ

Similarly to the first case, these are real when λ> 0.

All three are pitchfork bifurcations.
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The full bifurcation diagram is:
λ

x

(x,0,0)

(x, x,0)(x, x, x)
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