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Solutions for Chapter 4: Symmetry princple

Qu 4.1: Let Z3 = {0,1,2} with addition modulo 3, and let ω = e2πi/3 (note that ω3 = 1). Consider

the action of Z3 on the complex plane C defined by

n · z =ωn z

(i) Show first this is indeed an action. (ii) Show that the equation z3 = 8 has symmetry Z3 and that

the set of solutions also has this symmetry.

Solution (i) Just need to check that the action satisfies the homomorphism property. Let

m,n ∈Z3, then

m · (n · z) =ωm(ωn z) =ωn+m z = (m +n) · z

as required.

(ii) If we transform z by n ∈ Z3 the equation becomes (n · z)3 = 1. But it’s easy to see that

(n · z)3 = z3, so that works fine. The set of solutions of the equation is {2,2e2πi/3, 2e−2πim/3},

and multiplying any of these elements by ωm gives another element in the set, showing that

this set indeed has Z3 symmetry.

Qu 4.2: Let the group G act on two sets X and Y , and suppose that φ : X → Y is equivariant. If in

addition we suppose φ is a bijection, show that φ−1 : Y → X is also equivariant.

Solution φ−1 can be defiined uniquely by the condition that φ−1(φ(x)) = x for all x ∈ X . Then,

for each x ∈ X ,

φ−1(g ·φ(x)) =φ−1(φ(g ·x)) = g ·x = g ·φ−1(φ(x))

[Equivalently, we can write y =φ(x), then we have shown that φ(g ·y) = g ·φ−1(y), for all y ∈ Y .]

Qu 4.3: Let V be a representation of G , and let A : V → V be a linear map (a matrix), which is

equivariant. Recall that if v 6= 0 satisfies Av = λv for some λ ∈ R one says v is an eigenvector of A

with eigenvalue λ.

(i). Show that if v is an eigenvector of A with eigenvalue λ, then so is g ·v for each g ∈G .

(ii). Let Eλ be the λ-eigenspace of A,

Eλ = {v ∈V | Au =λu}.

Show that Eλ is G-invariant.

(iii). Let Gλ be the generalized eigenspace of A:

Gλ = {v ∈V | (A−λI )n v = 0},

where n = dimV . Show that Gλ is also G-invariant.
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Solution (i) Suppose Av = λv. Then A(g · v) = (Aρ(g ))v = ρ(g )Av = ρ(g )λv = λg · v. Here

ρ(g ) is the matrix representing the action of g (you can also write this with g in place of ρ(g ),

assuming g is itself a matrix.)

(ii) This is the same as (1), written differently.

(iii) Let v ∈Gλ; that is, (A −λI )nv = 0. If we show that g (A −λI ) = (A −λI )g then we are done,

for (by induction) g (A−λI )n = (A−λI )n g , and

(A−λI )n g v = g (A−λI )nv = g 0 = 0.

So, why is g (A −λI ) = (A −λI )g ? This is easy: we’re given that A commutes with g , and I

commutes with everything, hence

g (A−λI ) = (g A− gλI ) = (Ag −λI g ) = (A−λI )g .

Qu 4.4: Consider the function f (x, y) = x2+y2−x4−y4. Show this is invariant under the group D4

and find its set C ( f ) of critical points. Describe how the group acts on this set (i.e., determine the

orbits and the orbit type for each orbit), and hence state the Burnside type of the action on C ( f ).

Solution Now D4 has two generators, and we can take either D4 = 〈r0, rπ/4〉 or D4 = 〈r0, Rπ/2〉.
Let us use the former to check invariance (recall: it suffices to check for invariance under a set

of generators of the group). Now f (r0(x, y)) = f (x,−y) = f (x, y) (as f is even in y). Similarly,

f (rπ/4(x, y))= f (y, x)= f (x, y) (since f is symmetric in x and y).

Now to find its critical points:

fx = 2x(1−2x2), fy = 2y(1−2y2).

The set of solutions C ( f ) of these equations is (written as a union of orbits)

C ( f ) =
{

(0,0)
}

∪
{

(τ,0), (−τ,0), (0, τ), (0,−τ)
}

∪
{

(τ,τ), (−τ,τ), (τ,−τ), (−τ,−τ)
}

where τ= 1/
p

2. There are therefore three orbits. The first has stabilizer D4.

The second includes the point (τ,0) which has stabilizer D1, while the third

has stabilizer a conjugate copy of D1 (conjugate in O(2) but not in D4), call

this D′
1. Then the orbit types are (D4), (D1) and (D′

1). There is one of each

type, so the Burnside type is therefore

1(D4) + 1(D1) + 1(D′
1).

b

b

b

b

b

b

b

b

b
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Qu 4.5: Let V be a representation of G with V G = {0}. Prove directly that if f : V →R is an invariant

function then it has a critical point at 0. [By directly, I mean do not use the Principle of Symmetric

Criticality, but you may use its proof to inspire you.]

Solution We have proved that since f is invariant, grad f : V →V is equivariant. We have also

proved that if φ : V →V is equivariant, and y =φ(x) then Gx ≤Gy .

Putting these together, shows that grad f (0) ∈ V G (because if y = grad f (0) then Gy ≥G0 =G).

But V G = {0} and hence grad f (0) = 0 as required.

Qu 4.6: Find all the critical points of the D3-invariant function f (x, y) = λ(x2 + y2)+ 1
3 x3 − x y2.

Relate these to the fixed point subspaces for different subgroups of D3 (refer to Fig. 4.1).

Solution The critical points are given by fx = fy = 0 (partial derivatives). Here

fx = 2λx +x2 − y2, fy = 2y(λ−x).

To solve fx = fy = 0, first consider fy = 0. This implies y = 0 or x =λ. If y = 0 then fx = 0 shows

x = 0 or x = −2λ. This gives two points with y = 0, namely (0,0) and (−2λ,0). If on the other

hand, y 6= 0 then x = λ and fx = 0 implies y = ±
p

3λ. These are two other points: (λ,±
p

3λ).

There are thus 4 critical points (although if λ= 0 these four points are all the same!).

The relation to symmetry is: (0,0) is fixed by the whole group D3, next (−2λ,0) is in the line of

reflection of r0. The other two points are in the lines of reflection of r±π/3. These each have

symmetry Z2 for different copies of Z2 in D3.

A little more thought: the origin is one orbit of critical points, and the other three points form

another orbit. Since they are in the same orbit, their stabilizers are conjugate (Proposition

1.5). In Fig. 4.1, which is for a very similar function, there are also 4 critical points: the origin

is one (it’s a local minimum) and the other 3 are saddle points at the crossings of the light blue

‘curve’.
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Qu 4.7: For the system of 4 springs discussed in lectures (Example 4.12), study the critical points

in the subspace Fix(K ,R2), where K = 〈rπ/4〉.

Solution The points (x, y) fixed by rπ/4 are the points on the diagonal y = x. The potential

energy V on this line is given by substituting y = x in the expression on p.4.6:

V (x, x)=
(
√

(x −a)2 +x2 −1
)2

+
(
√

(x +a)2 +x2 −1
)2

.

Rather than analyze this (which is possible—just complicated), we follow Example 4.12 and

consider the Taylor series at 0:

V (x, x) = 2(a −1)2 +2(2−a−1)x2 −
3

2a3
x4 +O(5)

Like in the example, this has a local minimum at 0 when a > 1/2 and a local max when a <
1/2. The other critical points are at x = ±

p
6

3

p
2a −1. If a < 1/2 the origin is the only critical

point, but as a then increases through a = 1/2 two new critical points appear in a pitchfork

bifurcation. These new critical points have less symmetry than the origin (or than the problem

as a whole), namely D′
1 = 〈rπ/4〉 (a conjugate copy of D1 — conjugate in O(2), not in D4).

On the right is the diagram of all critical points

on the diagonal y = x for a in the range [0,1]

(produced numerically by computer). If you

focus on a neighbourhood of (a, x) = (1/2,0)

you see a pitchfork bifurcation.
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Qu 4.8: Let G act on a set X , and let Ω be the set of all functions f : X →R. Show that the following

formula defines an action of G on Ω:

(g · f )(x) = f (g−1x), for f ∈Ω, g ∈G , x ∈ X .

In other words, g · f = f ◦ g−1.

[Note: The inverse here should be reminiscent of the action by right multiplication of a group on itself, from

Chapter 1 (§1.3) which also involves an inverse.]

Solution We need to show g · (h · f ) = g h · f . Now,

g h · f = f ◦ (g h)−1 = f ◦ (h−1 ◦ g−1) = ( f ◦h−1)◦ g−1 = (h · f )◦ g−1 = g · (h · f )

as required. Note we are using the fact that composition of functions is associative.

Qu 4.9: Suppose V ,W are representations of a group G . Let φ j : V →W be two equivariant maps,

and let f j : V →R be two invariant functions ( j = 1,2). Show that the map ψ : V →W given by

ψ(v) = f1(v)φ1(v)+ f2(v)φ2(v)

is equivariant.

Solution This is a straightforward calculation: let g ∈G and v ∈V . Then

ψ(g ·v) = f1(g ·v)φ1(g ·v)+ f2(g ·v)φ2(g ·v) (definition)

= f1(v)(g ·φ1(v))+ f2(v)(g ·φ2(v)) (invariance/equivariance)

= g ·
(

f1(v)φ1(v)+ f2(v)φ2(v)
)

(linearity)

= g ·ψ(v). (definition)

The penultimate equality (marked linearity) holds because the action of g is linear, so

g · (au+bv) = a(g ·u)+b(g ·v)

for any scalars a,b, and here f1(v) and f2(v) are both scalars (real numbers).

[Comment for more advanced algebraists: this shows that the set of equivariant maps is a

module over the ring of invariant functions.]
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Qu 4.10: Find all homomorphisms of the cyclic group Z4 to the cyclic group Z6. [Hint: If H is a
cyclic group generated by a, and φ : H → G a homomorphism, then φ is entirely determined by
knowing φ(a). ]

Solution Write the groups additively (addition modulo 4 and 6 respectively). The first group

Z4 is generated by 1, so we need only state the value of φ(1). It is of course an element of

Z6, and we consider case by case (recall that if φ : H → G is a HM then φ(eH ) = eG , or in this

case φ(0) = 0). The only problem arises because we need φ(0) = φ(4) (since 0 = 4 in Z4) and

φ(4) = 4φ(1)).

• φ(1) = 0: This is the trivial HM φ(a)= 0 for all a ∈Z4.

• φ(1) = 1: This does not define a HM, since φ(4) = 4φ(1) = 4 6= 0 in Z6.

• φ(1) = 2: φ(0) =φ(4) = 4φ(1) = 8 6= 0, so not a HM.

• φ(1) = 3: φ(0) =φ(4) = 4φ(1) = 12 = 0 (in Z6), so this is a HM.

• φ(1) = 4 and 5: these are also not homomorphism for similar reasons.

There are therefore only two homomorphisms Z4 to Z6, one of which is trivial and the other

has image {0,3} ⊂Z6.
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