2 hours

## THE UNIVERSITY OF MANCHESTER

## SYMMETRY IN NATURE

01 June 2017

09:45 - 11:45

## Answer ALL FOUR questions

Electronic calculators may be used, provided that they cannot store text, transmit or receive information, or display graphics

(a) Name the symmetry groups of the following two planar shapes, and state in each case the order of the group, generator(s) of the group and whether the group is Abelian.

1.



[6 marks]

(b) Consider the two functions  $f(x) = \cos(\pi x) - 2\cos(2\pi x)$  and  $g(x) = \sin(\pi x) - 2\cos(3\pi x)$ . Their graphs are shown below.



Determine geometrically the full symmetry group of each of the functions f and g, including possible transformations of x that reverse the sign of the function, and verify these are symmetries using the expressions for the functions. [8 marks]

- (a) Suppose a finite group *G* acts on a set *X*.
  - (i) Define the orbit and stabilizer of a point  $x \in X$ . Show that the stabilizer of a point is always a subgroup of *G*.
  - (ii) Let  $y = k \cdot x$  for some  $k \in G$ . Show that the stabilizer subgroups  $G_x$  and  $G_y$  are conjugate subgroups of *G*.

[6 marks]

(b) Let  $D_6$  be the usual dihedral group of order 12, and let  $V = \{A, B, ..., F\}$  be the set of vertices of the hexagon as shown on the right. Denote by  $\mathcal{P}(V)$  the power set of V, which is the set of all  $2^6$  subsets of V. Denote by  $\mathcal{P}(V)_k$  the subset of  $\mathcal{P}(V)$  consisting of those subsets of cardinality k (k = 0, 1, ..., 6).

 $D \xrightarrow{C \quad B} \\ B \\ E \quad F$ 

There is a natural action of  $D_6$  on  $\mathcal{P}(V)$  defined by

$$g \cdot S = \{g \cdot x \mid x \in S\}, \quad \text{for } S \subset V, \ g \in D_6.$$

- (i) State the orbit stabilizer theorem, and for  $S_1 = \{B, C\}$  find the stabilizer and orbit of  $S_1$  in  $\mathcal{P}(V)_2$ , and show they satisfy the theorem.
- (ii) Find an element  $S_2 \in \mathcal{P}(V)_2$  whose stabilizer has different order to that of  $S_1$ .

Consider in addition the action of  $\mathbb{Z}_2 = \{e, \sigma\}$  on  $\mathcal{P}(V)$  defined by

$$\sigma(S) = S'$$

where *S*' is the complement of *S* in *V*. Let  $G = D_6 \times \mathbb{Z}_2$ .

- (iii) Write down  $\sigma(S_1)$ . Use  $\sigma$  to show that the D<sub>6</sub> actions on  $\mathcal{P}(V)_2$  and  $\mathcal{P}(V)_4$  are isomorphic.
- (iv) Consider  $S_0 = \{A, C, E\}$  and find its stabilizer for each of the  $D_6$  and the  $D_6 \times \mathbb{Z}_2$  actions on  $\mathscr{P}(V)$ . Show that the stabilizer for the  $D_6 \times \mathbb{Z}_2$  action is the graph of a homomorphism from  $D_6$  to  $\mathbb{Z}_2$ . What is the relevance of the kernel of this homomorphism?

[16 marks]

2.

(a) Define the action on  $\mathbb{R}^2$  of an element  $(A | \mathbf{v}) \in \mathsf{E}(2)$ , where  $A \in \mathsf{O}(2)$  and  $\mathbf{v} \in \mathbb{R}^2$ , and deduce that multiplication in the group is given by

$$(A | \mathbf{v})(B | \mathbf{u}) = (AB | \mathbf{v} + A\mathbf{u}).$$
 [4 marks]

(b) Consider the following lattice in the plane:

$$L = \left\{ (x, y) \in \mathbb{R}^2 \mid x \in \mathbb{Z}, y \in \mathbb{Z}, x + y \in 2\mathbb{Z} \right\}.$$

- (i) Show that the two vectors  $\mathbf{u}_1 = (2,0)$  and  $\mathbf{u}_2 = (0,2)$  both belong to *L*, and sketch a diagram showing all the points of *L* that lie in the rectangle  $0 \le x \le 6$  and  $0 \le y \le 6$ . Deduce that  $L \ne \mathbb{Z}{\{\mathbf{u}_1, \mathbf{u}_2\}}$ .
- (ii) Find two vectors **a** and **b** such that  $L = \mathbb{Z}\{\mathbf{a}, \mathbf{b}\}$ , proving carefully that this is the case.
- (iii) Define the point group of a lattice. Show that the point group  $J_L$  of the lattice L has order 8 by finding appropriate elements of its symmetry group  $W_L < E(2)$ , expressed in the form  $(A | \mathbf{v})$ .
- (iv) Now consider the wallpaper pattern produced by placing the symbol  $\bigcup$  at those points of *L* where  $y \in 2\mathbb{Z}$ , and  $\cap$  at the points of *L* where  $y \notin 2\mathbb{Z}$ . Let  $\mathcal{W}$  be the wallpaper group of this pattern, with point group *J*. Draw the modified version of the diagram from (i) (with just  $0 \le x \le 4$  and  $0 \le y \le 4$ ), and show that  $J = D_2$ . Explain how  $r_0$  is an element of the point group, again by finding an element ( $r_0 | \mathbf{v}$ )  $\in \mathcal{W}$ . Describe this last transformation.

[20 marks]

3.

- 4.
  - (a) Let  $\mathbb{Z}_2 = \{e, \beta\}$  act on  $\mathbb{R}$  by  $\beta \cdot x = -x$ . Show that the differential equation  $\dot{x} = x \cos(x)$  has symmetry group  $\mathbb{Z}_2$ . Let x(t) be the solution with initial value x(0) = 1, and let u(t) be the solution with initial value u(0) = -1. How are x(t) and u(t) related? [4 marks]
  - (b) Let D<sub>4</sub> be the usual dihedral subgroup of order 8 of O(2), generated by  $r_0$  and  $R_{\pi/2}$ . List all axial subgroups of D<sub>4</sub>. Show that the smooth function  $f(x, y) = x^2 + y^2 x^2 y^2$  is invariant under the D<sub>4</sub> action. Now consider the system of differential equations

$$\dot{x} = \frac{\partial f}{\partial x}, \qquad \dot{y} = \frac{\partial f}{\partial y}$$

Find all equilibria of this system with axial symmetry, and find the solution with initial condition (x, y) = (1, 0). [8 marks]

(c) Suppose  $\gamma(t)$  is a periodic solution with fundamental period *T* of a differential equation with symmetry group *G*. Define the symmetry group of the periodic solution.

Suppose a mechanical system in the plane has potential energy V(x, y), and that the system has D<sub>4</sub> symmetry. Let  $\gamma$  be a periodic orbit with period T and symmetry group  $\widetilde{C}_4$ , and let  $\delta(t)$  be a periodic solution of the same period and with symmetry  $\widetilde{D}_1$ . Write down in each case what the symmetry group tells us about the periodic orbit. Below is shown numerical data taken from an experiment with this symmetry showing both x(t) and y(t). Determine whether the solution has symmetry  $\widetilde{D}_1$  or  $\widetilde{C}_4$ , explaining which graph is x(t) and which is y(t).



[8 marks]

## **END OF EXAMINATION PAPER**