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1.

(a) Name the symmetry groups of the following two planar shapes, and state in each case the

order of the group and whether the group is Abelian.

(i) (ii)

[4 marks]

(b) Consider the periodic function f of one variable whose graph is shown below.

1 2 3−1−2−3

x

y

y = f (x)

By inspecting the graph, find the symmetry group of the function f allowing for possible

change in sign of the function. More precisely, consider the action of the group E(1)×Z2,

where E(1) is the Euclidean group in 1 dimension, and (φ ,s) ∈ E(1)×Z2 acts on a function by

(φ ,s) · f = s f ◦φ−1
.

Here s ∈ Z2 = {1,−1} with multiplication, and is acting by changing the sign of f .

Verify that the function f (x) = sin(πx)− sin(3πx) has the symmetry you found.

You may assume that every transformation T ∈ E(1) is either a translation of the form

T (x) = u+ x or a reflection of the form T (x) = u− x for some u ∈ R. [8 marks]
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2. Consider the subgroups C4 and D4 of O(2).

(a) Write down the orbit of the point p = (1,1) ∈ R
2 under each of the C4 and D4 actions. State

the orbit-stabilizer theorem and explain how these orbits illustrate this. [8 marks]

(b) Let X be the set of 12 quadratic functions on the plane,

X =
{

ax2 +bxy+ cy2 | a,c ∈ {−1,1}, b ∈ {−1,0,1}
}

,

(for example f1(x,y) = x2 − xy+ y2 and f2(x,y) = x2 − y2 are both elements of X ). Let D4 act

on X by g · f = f ◦g−1, where f ∈ X ,g ∈ D4.

(i) Show that this action is not effective.

(ii) Find those functions that are fixed by this action of D4.

(iii) Determine the Burnside type of this action. [16 marks]

3.

(a) Define the action on R
2 of an element (A | v) ∈ E(2), where A ∈ O(2) and v ∈ R

2, and deduce

that multiplication in the group is given by

(A | v)(B | u) = (AB | v+Au).

Use this to find the Seitz symbol for the inverse of the element (A | v). [6 marks]

(b) Consider the following lattice in the plane:

L =
{

(x,y) ∈ R
2 | x+ y ∈ 2Z, x− y ∈ 2Z

}

.

(i) Show that (x,y) ∈ L implies x,y ∈ Z, and find an example of integers x,y for which

(x,y) 6∈ L. Sketch a diagram showing all the points of L that lie in the square −2 ≤ x ≤ 4

and −2 ≤ y ≤ 4.

(ii) Find two vectors a and b such that L = Z{a,b}, proving carefully that this is the case.

Name the symmetry type of the lattice (one of ‘Oblique’, ‘Rectangular’, ‘Centred

rectangular’, ‘Square’ or ‘Triangular’), giving a brief explanation.

(iii) Define a glide reflection in the plane. Find a glide reflection (A | v) in WL whose line of

reflection is not the line of reflection of a reflection symmetry of L.

[18 marks]
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4. Consider the following system of ordinary differential equations,







ẋ = −x+ yz2

ẏ = −2y+ xz2

ż = z(1− x2 − y2 − z2).
(∗)

Consider the action of the group G ≃ Z2 ×Z2 generated by the matrices

A =





−1 0 0

0 −1 0

0 0 1





, B =





1 0 0

0 1 0

0 0 −1





.

(a) Show that the system (∗) has symmetry G. Deduce that the x-y plane and the z-axis are each

invariant under the evolution of the system, stating carefully any results used. [10 marks]

(b) Find all the equilibrium points that lie on these subspaces. [5 marks]

(c) Find the unique solution to this system with initial value (x,y,z) = (1,1,0). What is the limit

as t → ∞ of this solution? [5 marks]

END OF EXAMINATION PAPER
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