
Appendix A

Background group theory

This course assumes students have taken a first course in Group Theory, and are fa-

miliar with, in addition to the definition of a group, the notions of coset, homomor-

phism, conjugation, normal subgroup and the first isomorphism theorem. In this

appendix we recall these ideas and their basic properties. At the end of each section

there are a few exercises to help (re)familiarize yourself with groups. This should not

be treated as a (quick) course on Group Theory, as it is not set out entirely logically

(for example, the word ‘isomorphism’ is used before its definition is given).

First recall the definition of a group:

Definition A.1. A group is a set, G , together with a binary operation ⋆ (called the

group law of G) that combines any two elements a and b of G to form another ele-

ment, denoted a ⋆b or just ab. To qualify as a group, the set and operation, (G ,⋆),

must satisfy the four group axioms:

Closure For all a,b ∈G , the result of the operation, a ⋆b, is also in G .

Associativity For all a,b and c in G , (a ⋆b)⋆c = a ⋆ (b ⋆c).

Identity element There exists an element e ∈ G , such that ∀a ∈ G , e ⋆ a = a ⋆ e = a.

[Such an element is unique.]

Inverse elements For each a ∈ G , there exists an element b ∈ G such that a ⋆ b =

b ⋆a = e (the identity element). This (unique) element is called the inverse of a

and written a−1.
✯

Note that the existence of the identity element implies that the empty set is not a

group (although the empty set does satisfy the other three axioms!). We will usually

refer to the binary operation as multiplication, except in the cases where it is clearly

addition.

The number of elements in a group is called the order of the group. A group (G ,⋆)

is Abelian (or commutative) if a ⋆b = b ⋆a for all a,b ∈G .
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A1 Examples of groups

Here we list a few standard examples of groups, and we will be using most of these

during the course. We don’t prove they are groups but leave that to the motivated

student.

For a general group G , we will write e or eG for the identity element. For specific

groups, specific notation may be more appropriate, such as 0 ∈ V in (5) below (the

zero vector), and I ∈GLn(R) (the identity matrix) in (6).

Examples A.2.

(1). The trivial group {e} is the group with just one element (necessarily the iden-

tity element). We denote this group by 1.

(2). The group of order 2, denoted Z2. There are two common instances of this:

firstly {0,1} under addition modulo 2 (where 0 is the identity), and secondly

{1,−1} under multiplication (where 1 is the identity).

(3). The cyclic group of order n, denoted Zn . It is usually defined to be the set

{0,1,2, . . . ,n −1} with addition modulo n and often written Z/nZ. The group

Z with addition is the infinite cyclic group.

(4). The symmetric group Sn consists of all permutations of a set of n elements,

usually taken to be the first n integers {1,2, . . . ,n}. The identity element is the

‘trivial’ permutation, the one leaving everything fixed. The group operation

is composition, σ ◦ τ, which of course means first apply the permutation τ

and then σ. This group has order n!. See Chapter 1 for more details.

(5). The set of real numbers together with addition (R,+) forms a group, where

the identity element is 0. The set of non-zero real numbers together with mul-

tiplication: (R∗,×) also forms a group, and in this case the identity element is

1.

The same construction holds for any field F (for example C or Zp for prime

p): addition makes the whole field F into a group, while multiplication makes

F
∗ = F\ {0} into a group. These are always Abelian groups.

(6). Any vector space V under addition of vectors: the zero vector 0 is the identity

element, and the inverse of a vector v is −v.

(7). The set of all invertible n ×n matrices with real entries, with matrix multipli-

cation as the group operation; the identity element of the group is the iden-

tity matrix I . This group is denoted GLn(R) (the ‘general linear’ group). [The

associativity of matrix multiplication is proved in a first course on Linear Al-

gebra.]
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(8). For n ≥ 1, Dih(2n) is the abstract dihedral group of order 2n. It can be de-

fined by either of two ‘presentations’, both with two generators,

Dih(2n) = 〈a,b | a2
= b2

= (ab)n
= e〉

= 〈a,R | a2
= (aR)2

= Rn
= e〉.

It is easy to check that these are equivalent definitions, by putting R = ab (or,

equivalently, b = aR). Note that when n = 1, R = e and a = b, and hence

Dih(2) is indeed of order 2.

(9). The infinite dihedral group is defined to be,

Dih(∞) = 〈a,b | a2
= b2

= e〉 .

The element R = ab has infinite order. See also Problem A2.10 below.

(10). If G and H are two groups, then their Cartesian product (or ‘direct product’)

is the group G ×H = {(g ,h) | g ∈G , h ∈ H } with operation

(g1,h1)⋆ (g2,h2) = (g1 ⋆ g2,h1 ⋆h2).

The groups in examples 1, 2, 3, 5, and 6 are Abelian, as are Dih(2), Dih(4). The

others are not in general.

Multiplication table For a finite group of order n, the multiplication table is an n×

n array with one column and one row for each element of the group. The convention

is

⋆ . . . h . . .

...

g g ⋆h
...

Note that each column and each row contain only one of each element.

Exercises

A1.1 Prove (by contradiction) that each column and each row of the multiplication

table of a group contains only one of each element.

A1.2 Suppose G = {e, a,b} is a group of order 3. Find the only possible multiplication

table (by trial and error: recall each column and each row must have precisely

one of each element).
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A.4 §A2 Subgroups and their cosets

A1.3 Suppose G = {e, a,b,c} is a group of order 4. Show (by trial and error) that there

are only four possible multiplication tables. Show that three of these give iso-

morphic groups (obtained by permuting the elements). There are therefore

only two different groups of order 4, ‘up to isomorphism’.

A1.4 Suppose we know that a particular set and product (G ,⋆) satisfies the 1st 2nd

and 4th axiom of a group, but instead of the existence of inverse elements, we

know each element a has a left inverse and right inverse which may be differ-

ent: that is, there are b and c such that a⋆b = c ⋆a = e . Show that in fact b = c ,

so that G is indeed a group.

A1.5 Let F be a field, and let F∗ be the set of non-zero elements of F . Show that

(F∗,⋆) is a group, where ⋆ is multiplication in the field. [You may need to look

up the definition of a field.]

A1.6 Show that the Cartesian product of two groups is indeed a group (as defined in

Example (10) above).

A1.7 Suppose all elements of a particular group G satisfy g 2 = e . Show that G is

Abelian.

A1.8 To see a group of a totally different nature, consider the set of 6 functions

Φ=
{

f1(x) = x, f2(x) = 1−x, f3(x) = 1
x , f4(x) = x−1

x , f5(x) = 1
1−x , f6(x) = x

x−1

}

.

Show that these form a group under composition, for example f2 ◦ f4 = f3.

Which element is the identity? Is this group isomorphic to Z6 or to Dih(6)?

From now on we usually omit the symbol for multiplication in a group, and just

write the elements juxtaposed; thus a ⋆b becomes simply ab.

A2 Subgroups and their cosets

A non-empty subset H ⊆ G is a subgroup, written H ≤ G , if the binary operation of

G makes H into a group. In particular this requires, once we know the subset is non-

empty,

(1). if g ,k ∈ H then g k ∈ H , and

(2). if g ∈ H then g−1 ∈ H .

(Note that the associativity property is automatic, since we already know it holds for

all elements of G .) These properties are together called the subgroup criterion. An

even shorter equivalent statement is that a non-empty subset H is a subgroup if g ,k ∈

H =⇒ g k−1 ∈ H .
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Examples A.3. (1). 1≤G for any group G .

(2). If k < n then Sk ≤ Sn (it permutes elements 1,2, . . . ,k leaving k+1, . . . ,n alone).

(3). The set of all n×n matrices with real entries and of determinant 1. This is de-

noted SLn(R) and called the ‘special linear group’; it is a subgroup of GLn(R).

(4). The orthogonal groupO(n) is the subgroup ofGLn(R) consisting of all orthog-

onal n ×n matrices (those satisfying A AT = I ), and SO(n)=O(n)∩SLn(R).

(5). In the group C
∗ (non-zero complex numbers under multiplication) the set of

complex numbers with modulus 1 forms a subgroup, often denoted U(1).

(6). If k |n (k divides n) then Ck is a subgroup of Cn . See Examples A.9 for details.

Note that if H is a subgroup of K and K is a subgroup of G then H is a subgroup of

G . Moreover, if H ,K are subgroups of G then so is their intersection H ∩K (exercise).

When H is a finite subgroup of G (whether G is finite or not), then it is often useful

to talk of the generators of H , and we write

H = 〈h1, h2, . . . ,hr 〉

to mean that every element of H can be written using the given elements, so for ex-

ample g = h1h−2
3 h3

4 ∈ H . In particular, a cyclic subgroup of a group G is a subgroup

with one generator: H = 〈a〉, and then H is the subgroup containing all powers of a:

H =
{

an
| n ∈Z

}

=
{

. . . , a−2, a−1,e, a, a2, . . .
}

.

And this may or may not be finite, depending on a (and G).

Cosets If H ≤G then we write

g H :=
{

g h |h ∈ H
}

.

This is called a left coset of H . In particular g ∈ g H , since g = g e and e ∈ H .

An important fact is that any two left cosets of H are either disjoint or are equal.

That is,

g H ∩k H 6= ; =⇒ g H = k H .

The set of all left cosets of H in G is denoted G/H and plays an important role in the

theory of group actions and symmetry.

In a similar vein, a right coset of H is a set of the form

H g := {hg | h ∈ H }.

We will concentrate on left cosets rather than right cosets, but the ideas are equiva-

lent.

The following lemma gives two basic properties of cosets.
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A.6 §A2 Subgroups and their cosets

H g2H g3H . . . gn H

FIGURE A.1: The n cosets form a partition of G .

Lemma A.4. Let H be a finite subgroup of G, and let g ∈G.

(1). The coset g H has the same number of elements as H.

(2). If k ∈ g H then k H = g H.

Proof: (1) is clear from the definition. (2) The element k must be of the form

k = g h1 say, so kh = g h1h ∈ g H as h1h ∈ H . But this is true for any h ∈ H and

therefore k H ⊂ g H . But they have the same cardinality so they must be equal. ❒

It follows from this lemma that any two cosets are either equal or disjoint (see

Figure A.1). Indeed, if there are not disjoint, then g1H ∩ g2H 6= ; and there is an

element k ∈ g1H ∩ g2H which therefore satisfies k H = g1H and k H = g2H and so

g1H = g2H .

As a consequence of this, if G is a group and H ≤ G is a subgroup, G can be de-

composed in a disjoint union of its left cosets: G =
⊔

g∈G g H . The union is due to the

fact that any g ∈ G belongs to the coset g H and the union is disjoint since cosets are

either disjoint or equal. If G is a group of finite order, this union is finite.

The same properties hold for right cosets.

Theorem A.5 (Lagrange’s Theorem). If G is a finite group and H is a subgroup

of G, then |H | divides |G|.

Proof: We know that G can be written as a disjoint union of its left cosets, say

n of them, that is, G =
⊔n

i=1
gi H . Since every coset of H has the same number of

elements as H itself (see the lemma above), the order of G is |G| = n|H |. ❒

In particular,

|G/H | =
|G|

|H |
. (A.1)

This number |G/H | is called the index of H in G , and often denoted |G : H |.

Conjugacy Two elements a,b ∈ G are conjugate if there is a g ∈ G such that b =

g ag−1. Conjugacy defines an equivalence relation on a group, and the equivalence

classes are called conjugacy classes. If the group is Abelian (commutative) then b =

g ag−1 = ag g−1 = a so the conjugacy classes each contain only one element. Suppose

H and K are two subgroups of G . They are said to be conjugate subgroups if there is

an element g ∈G such that K = g H g−1.
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Normal subgroup A subgroup H is said to be a normal subgroup if, for all g ∈ G ,

g H g−1 = H . One writes H ✁G in this case.

If H ✁G then left and right cosets are equal:

g H = g (g−1H g )= H g .

Moreover, in this case the set of (left) cosets G/H forms a group, with binary operation

coming from that on G ; namely,

(g H )(k H )= g k H . (A.2)

This works because (g H )(k H )= g (Hk)H = g (k H )H = g k H .

To reiterate: for any subgroup, G/H is a set, but it has the structure of a group

whenever H is a normal subgroup of G . In this latter case it is called the quotient

group or factor group of G by H (see below in § A4 for more details).

Example A.6. The subgroup SLn(R) is a normal subgroup of GLn(R). On the other

hand O(n) is not a normal subgroup of GLn(R).

Definition A.7. Let H ≤G . The normalizer of H in G is

NG(H ) = {g ∈G | g H g−1
= H }.

The centralizer of H is the set of elements that commute with all elements of H :

CG (H ) = {g ∈G | g hg−1
= h, ∀h ∈ H }.

Similarly, one defines the centralizer of an element h ∈ G to be CG (h) = {g ∈ G | g h =

hg }. ✯

Both these subsets NG (H ) and CG (H ) are in fact subgroups of G (see the exercises

below). It is easy to see that NG (H ) contains H , and it has the property of being the

largest subgroup of G in which H is a normal subgroup. On the other hand, CG (H )

may be the trivial subgroup 1.

Exercises

A2.1 Show that if H ,K are subgroups of G then H ∩K is also a subgroup of G .

A2.2 Let p be a prime number. Show that the only subgroups of Zp are the trivial

group 1 and the group Zp itself.

A2.3 How does this change if p is not prime? (Hint: think about divisors of p .)

A2.4 Show that a non-empty subset H ⊂G is a subgroup if and only if,

g ,h ∈ H =⇒ g h−1
∈ H .
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A2.5 Show that every subgroup of an Abelian group is a normal subgroup.

A2.6 Consider the group G = S3 of permutations. Choose a subgroup H2 of order 2

and a subgroup H3 of order 3 and write down their left cosets, and their right

cosets. Which of H2 and H3 is a normal subgroup?

A2.7 Show that O(n) and SLn(R) are indeed subgroups of GLn(R) (as stated in the

examples above).

A2.8 For any group G and any subgroup H show that the normalizer NG (H ) is a

subgroup of G .

A2.9 For any group G and any subgroup H show that the centralizer CG (H ) is a sub-

group of G .

A2.10 Consider the infinite dihedral group Dih(∞) (see p.A.3). Show that the infinite

cyclic subgroup generated by R = ab is a normal subgroup of Dih(∞).

A3 Homomorphisms

If G , H are two groups then a map φ : G → H is a homomorphism if it “respects the

group properties”. In particular, φ is a homomorphism if

φ(ab)=φ(a)φ(b), ∀a,b ∈G (A.3)

It follows from this condition that

(1). (identity) φ(eG ) = eH .

(2). (inversion) ∀g ∈G , φ
(

g−1
)

=φ(g )−1.

Indeed, for (1)

φ(eG )φ(eG ) =φ(e2
G ) =φ(eG ),

and multiplying by φ(eG )−1 shows φ(eG )= eH . For (2),

φ(g )φ
(

g−1
)

=φ(g g−1) =φ(eG )= eH .

Then φ(g )φ
(

g−1
)

= eH and hence (2) holds.

A homomorphism φ : G → H is an isomorphism if it is bijective. In this case it

follows that φ−1 is also a homomorphism. If two groups G and H are isomorphic we

write G ≃ H . An isomorphism of a group with itself is called an automorphism (see

Section A5 below for more details).

The kernel of a homomorphism φ : G → H is defined to be

kerφ= {g ∈G |φ(g ) = eH }.

It is easy to check that the kernel of a homomorphism φ : G → H is a subgroup of G .

Moreover it is a normal subgroup, as we show next, and this often gives a straightfor-

ward way to show that a given subgroup is normal.

© University of Manchester JM, January 28, 2020



BACKGROUND GROUP THEORY A.9

Lemma A.8. Let φ : G → H be a homomorphism. Then kerφ is a normal subgroup of

G.

Proof: Suppose k ∈ kerφ, so that φ(k) = e . Now let g ∈ G : we want to show that

g k g−1 ∈ kerφ. To see this we use the homomorphism property:

φ(g k g−1) = φ(g )φ(k)φ(g−1)

= φ(g )eφ(g )−1

= φ(g )φ(g )−1

= e,

as required. ❒

Examples A.9. (1). If k divides n then there is an injective homomorphismZk →

Zn , given by a 7→ n
k

a. For example,

Z4 −→Z12, a 7−→ 3a.

There is also a (surjective) homomorphism in the other direction:

Zn −→Zk , a 7−→ a mod k .

(If k does not divide n there are no injective or surjective homomorphisms.)

(2). An important homomorphism is the determinant of matrices,

det :GLn(R) →R
∗.

(Note that if A ∈ GLn(R) then it is invertible so det A 6= 0.) The homomor-

phism property det(AB ) = det(A)det(B ) is proved in Linear Algebra courses.

The kernel of this homomorphism is the subgroup SLn(R), which is therefore

a normal subgroup.

(3). Fix k ∈ G . The map Ck : G → G given by Ck (g ) = k g k−1 (called conjugation

by k) is a homomorphism. It is moreover an isomorphism, with inverse g 7→

k−1g k as is easily checked.

(4). For n ≥ 1, Dn is the geometric dihedral group defined to be the symmetry

group of the regular n-gon (polygon with n sides). It is isomorphic to the ab-

stract dihedral group Dih(2n), and has order 2n. An isomorphism Dih(2n) →

Dn is given by mapping a to any one of the reflectional symmetries of the

polygon, and R to the rotation of the polygon about its centre and through an

angle of 2π/n (see Chapter 2 for more details).
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Exercises

A3.1 Let φ : G → H be a homomorphism. If φ is a bijection, show that φ−1 is also a

homomorphism.

A3.2 Show that, as claimed above, if k divides n then the map φ : Zn → Zk defined

by φ(a) = a mod k is a homomorphism. Show that if k does not divide n this

map is not a homomorphism.

A3.3 Find all homomorphisms of the cyclic group Z4 to the cyclic group Z6. [Hint: If

H is a cyclic group generated by a, and φ : H →G a homomorphism, then φ is entirely

determined by knowing φ(a).]

A3.4 Show that Dih(4) ≃ Z2 ×Z2 (the Klein 4-group). How many different automor-

phisms are there?

A3.5 Let φ : G → H be a map between two groups and let

Γφ =
{

(g ,φ(g )) ∈G ×H | g ∈G
}

,

which is the graph of φ. Show that Γφ is a subgroup of G ×H if and only if φ is

a homomorphism.

A4 Quotient groups and the first isomorphism theorem

If K is a normal subgroup of G then G/K (the set of cosets) has the structure of a group

called the quotient group (often called the factor group), of G by K , with multiplica-

tion

(g K )(hK ) = g hK .

Theorem A.10 (The first isomorphism theorem). Let φ : G → H be a homomor-

phism, and let K = kerφ. Then K is a normal subgroup of G and the map

φ : G/K −→ im(φ)

g K 7−→ φ(g ).

is an isomorphism.

In particular, φ is well-defined, meaning that the value φ(g ) is independent of the

choice of element in its coset: φ(g ) = φ(g ′) whenever g and g ′ belong to the same

coset of K .

An important example of a quotient group is the circle group:
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Definition A.11. The circle group S1 is defined as follows: Consider the (Abelian)

group (R,+) of real numbers under addition. The set of integers Z is a normal sub-

group of R, and we put

S1
= R/Z.

✯

In other words, S1 can be parametrized by t ∈ [0,1], remembering that 1 and 0 are

equivalent, and addition is modulo 1. Two points s, t ∈R are equivalent in S1 if s − t is

an integer. Thus, for example, in S1,

1

2
+

2

3
=

1

6
,

because in R, 1
2 +

2
3 =

7
6 , and then 7

6 =
1
6 in S1.

In Example A.3(5), we defined U(1) as the subgroup of C∗ consisting of unit com-

plex numbers. The set of unit complex numbers forms a circle in C, and indeed there

is an isomorphism of S1 with U(1), defined using the map φ : R→C
∗ (additive reals to

multiplicative complex numbers) defined by

φ(t ) = e2πi t . (A.4)

See the first exercise below.

Exercises

A4.1 Show that the map φ : R→C
∗ given in (A.4) is a homomorphism with kernel Z.

Deduce (from the first isomorphism theorem) that S1 andU(1) are isomorphic.

A4.2 Show that S1 is isomorphic to SO(2) (defined in Chapter 2), using the map

ψ : R→ SO(2), ψ(x) = R2πx .

A4.3 Prove the first isomorphism theorem (begin by showing φ is well defined).

A5 Automorphisms

An automorphism of a group G is an isomorphism of G with itself. The set of all

automorphisms of G is denoted Aut(G), and is itself a group under composition.

Examples A.12. (1). For the groupZ2 there is only one automorphism (the iden-

tity) and for Z3 there are two — the identity and the one that swaps the two

non-identity elements. Thus Aut(Z2) = 1 and Aut(Z3) =Z2.

(2). Let g ∈G . Then conjugation by g defines an automorphism of G . That is, the

map Cg : G →G , h 7→ g hg−1 is an isomorphism of G with itself.
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(3). Let G be an Abelian group. Then it is easily checked that the inversion map,

i (g ) = g−1 is an automorphism of G . [This is only true for Abelian groups.]

Exercises

A5.1 Show Aut(Z4) ≃Z2, and if p is prime then Aut(Zp )≃Zp−1.

A5.2 Find all automorphisms of the group Dih(4) (see Exercise A3.4).

A5.3 Show that, for each g ∈ G , the map Cg : h 7→ g hg−1 is an automorphism of G .

(Automorphisms arising in this way are called inner automorphisms.)

A5.4 Consider the abstract dihedral group of order 8,

Dih(8) = 〈a,R | a2
= (aR)2

= R4
= e〉.

Consider the three maps α,β and γ of Dih(8) to itself:

g e R R2 R3 a aR aR2 aR3

α(g ) e R R2 R3 aR2 aR3 a aR

β(g ) e R3 R2 R a aR3 aR2 aR

γ(g ) e R3 R2 R aR a aR3 aR2

Show that α and β are inner automorphisms. Show also that γ is an auto-

morphsim (it is not an inner automorphism). [Hint: show α(g ) = Rg R−1. And

if we write Dih(8) with generators a and b (see Example A.2(8)), then γ(a) = b and

γ(b)= a.]
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