
Chapter 6

Symmetries of periodic motion

In an ODE, a periodic orbit is a (non-constant) solution γ(t ) for which there is T > 0

such that γ(t +T ) = γ(t ) for all t ∈R. In other words, γ(t ) repeats itself periodically. If

T satisfies this, so does any kT for k ∈Z. For instance, γ(t+2T )= γ(t+3T ) =γ(t−T )=
γ(t ). The least T > 0 satisfying this is called the fundamental period, which we write

as T0. Note that if γ(t ) is a periodic orbit, then γ(t ) cannot be an equilibrium solution

as by definition γ(t ) is not constant.

As a periodic motion progresses, the phase refers to the proportion of the period

covered. For example, the Earth moves around the Sun in a periodic motion with

fundamental period T0 = 1year, and the difference between the positions on Jan 1st

and April 1st would be a change of phase of 1/4.

More precisely, if a periodic orbit γ has fundamental period T0, then a change of

phase of θ is the motion from γ(t ) to γ(t +θT0) (for any t ).

The circle group is defined to be the group S1 ≃ R/Z (see the appendix). In prac-

tice, we identify

S1 = {θ ∈ [0,1] | θ = 0 and θ = 1 are identified},

but all calculations are modulo Z. For example 3
4
+ 3

4
= 3

2
≡ 1

2
. Note that the phase

as described above can be viewed as an element of S1 (we’ll see this in more detail

below).

6.1 Spatio-temporal symmetry

Consider the outer (dark blue) periodic orbit in Fig. 6.1(b). This curve forms a square

with rounded corners, and looks like it hasD4 symmetry (it does!). However, the curve

represents a motion, and it would be going either clockwise around the origin or an-

ticlockwise. The reflections in D4 will change the direction of motion, and we don’t

want to count that as a symmetry, and that leaves the 4 rotations of D4. Thus the sym-

metry group is C4. However, we want to include in the symmetry the change in time

(or phase) of the motion, given by each element. So for example, if we consider γ to
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6.2 § 6.1 Spatio-temporal symmetry

(a) (b)

FIGURE 6.1: These are numerical plots showing symmetric periodic

solutions to (a) the 3-spring ODE and (b) the 4-spring ODE, both de-

scribed in Chapter 4. In (a) the horizontal periodic orbit has symmetry

D1, the almost vertical one D̃1 while the almost circular one has sym-

metry C̃3. See also Example 6.10 below for more details.

be the anticlockwise solution along that curve, then the rotation Rπ/2 involves a time

shift by one quarter of a period. This idea gives rise to the so-called ‘spatio-temporal’

symmetry group of a periodic orbit. This notion of the spatio-temporal symmetry

group of a periodic orbit was introduced in an important paper [7] by Martin Golu-

bitsky and Ian Stewart published in 1985.

Definition 6.1. Let γ(t ) be a periodic orbit, with fundamental period T0 > 0, of an

ODE with symmetry group G . The spatio-temporal symmetry group Σγ of γ is the

group

Σγ = {(g ,θ) ∈G ×S1 | g ·γ(t )= γ(t +θT0), ∀t }.

It is a subgroup of the Cartesian product of G with S1. ✯

Thus (g ,θ) lies in the symmetry group of a periodic orbit if the action of g on the

orbit coincides with a change of phase by θ.

Exercise: Check Σγ is indeed a subgroup of G ×S1 (you can show this directly, but see

Problem 6.7 for a different argument).

Example 6.2. (Spring systems: see Fig. 6.1) The periodic orbit γ(t ) shown in light

blue in Figure 6.1(a), where the motion is anticlockwise, has spatio-temporal sym-

metry group equal to the subgroup of D3 ×S1,

Σγ = {(I ,0), (R2π/3, 1/3), (R4π/3, 2/3)}. (6.1)

For example, the element (R2π/3, 1/3) means that rotating the plane by 2π/3 ad-
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SYMMETRIES OF PERIODIC MOTION 6.3

vances the orbit by 1/3 of a period. This symmetry group is denoted C̃3, where

the tilde informs us of the time component in the symmetry group. The dark pink

(magenta) solution lies on the x-axis and has symmetry group

Σγ = {(e,0), (r0,0)}.

This means that r0 ·γ(t ) = γ(t ), that is γ(t ) lies in the line Fix(r0) (the line of reflec-

tion) for all t . In this case there is no ‘change of phase’ symmetry, and this symmetry

group is purely spatial: Σγ =D1.

Similarly, the nearly circular orbits in (b) have symmetry group

Σγ = {(I ,0), (Rπ/2, 1/4), (Rπ, 1/2), (R3π/2, 3/4)}.

These can be checked on the figures. This symmetry group is denoted C̃4. (Again,

the tilde refers to the time component.)

Note that in both examples, the orbits are rotating anticlockwise. The reflection

in the x-axis is a symmetry of the set of points in the orbit, but not of the orbit

itself because it reverses the direction of rotation (so doesn’t satisfy the definition of

symmetry). There are similar orbits rotating in the opposite direction. For example,

there is one with the symmetry group,

Σγ = {(I ,0), (R2π/3, 2/3), (R4π/3, 1/3)},

to be contrasted with (6.1). (Note that 2/3 ≡ −1/3 in S1.) This symmetry group is also

denoted C̃3.

The question remains, given a system with symmetry group G , which subgroups

of G ×S1 can arise as symmetry groups of periodic orbits? The following result helps

us to answer to that question.

Proposition 6.3. Let γ(t ) be a periodic orbit with fundamental period T0 > 0 and

with symmetry group Σγ ≤ G ×S1. Consider the projection π : Σγ → G defined by

π(g ,θ) = g . Then, π is an isomorphism onto its image.

Definition 6.4. A subgroup Σ of G ×S1 is said to be a spatio-temporal subgroup if

the projection π is an isomorphism of Σ with its image in G . ✯

The proposition above says that the spatio-temporal symmetry of a periodic orbit

is a spatio-temporal subgroup of G ×S1!

For the symmetry group in (6.1), we have

π(Σγ) = {I ,R2π/3,R4π/3} =C3 ≤D3.

We can see that π : Σγ → C3 is an isomorphism so that this Σγ is indeed a spatio-

temporal subgroup.
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6.4 § 6.1 Spatio-temporal symmetry

Proof: To prove the proposition, we first check that π is a homomorphism:

π((g ,θ)(h,φ)) = π(g h,θ+φ)

= g h

= π(g ,θ)π(h,φ).

It is clearly surjective, by definition of the image. To show injectivity, observe that

ker(π) = {(g ,θ) ∈Σγ | g = e} (6.2)

= {(e,θ) ∈Σγ} (6.3)

In particular, (e,θ) ∈ Σγ =⇒ γ(t +θT0) = e ·γ(t ) = γ(t ). But 0 ≤ θ < 1. If θ > 0, then

γ(t ) has period θT0 < T0 which is in contradiction with the minimality of the fun-

damental period T0. Therefore, θ= 0 andπ is injective. Thusπ is an isomorphism,

as stated. ❒

As a consequence, let Hγ := π(Σγ) which is a subgroup of G . The proposition tells

us that Hγ and Σγ are isomorphic, and that π provides the isomorphism. Thus for

each h ∈ Hγ, there is a unique θ= θ(h) ∈ S1 such that (h,θ(h))∈Σγ. That is, θ : Hγ → S1

is a map, whose graph is precisely the subgroup Σγ. It follows (see Exercise A3.5 in the

appendix) that θ is a homomorphism. (This is also easy to show directly.)

Conclusion: Given an ODE with symmetry G , the possible spatio-temporal sym-

metry groups of periodic orbits are given by two pieces of data:

• a subgroup H ≤G

• a homomorphism θ : H → S1.

We may therefore denote the symmetry group of a periodic orbit as a pair (H ,θ),

where H is a subgroup of G and θ : H → S1 is a homomorphism, and then the sym-

metry group is the graph of θ.

Since a group may have many subgroups, providing a list of all possible sym-

metry types may be a lengthy procedure, but it is not difficult. If two subgroups

are conjugate, then it is enough to study one of them. This is because, if (H ,θ) is a

spatio-temporal subgroup of G ×S1 then so is (H ′,θ′) where H ′ = g H g−1 and θ′(h′) =
θ(g−1h′g ) (for h′ ∈ H ′).

Example 6.5. Consider G =D3 acting on V (= R
2 for instance, as in the 3-springs

system). We want to find the possible spatio-temporal subgroups of D3 ×S1.

First we list the subgroups of D3. There are 4 types of subgroup (that is, any

subgroup is conjugate to one of these):

• 1

• D1 = 〈r0〉 and two conjugate copies of this: 〈rπ/3〉 and 〈r−π/3〉.

• C3 = 〈R2π/3〉
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SYMMETRIES OF PERIODIC MOTION 6.5

• D3

For each one of these, what homomorphisms θ : H → S1 are there?

• For H = 1, the only possible homomorphism θ : 1→ S1 is θ(I ) = 0 as a homo-

morphism maps the identity element to the identity element. Thus (H ,θ) =
(1,0).

• H = D1, θ : D1 → S1. Since it is a homomorphism, θ(r 2
0 ) = θ(r0)+ θ(r0) =

2θ(r0) mod Z in Z/R. But r 2
0 = I and θ(I ) = 0. Therefore, 2θ(r0) = 0 mod Z.

Thus, θ(r0) = 0 or θ(r0) = 1/2

i) If θ(r0) = 0, then Σγ = {(I ,0), (r0,0)}. This says γ(t + 0I ) = r0 · γ(t ) i.e.

γ(t ) = r0 ·γ(t ) for all t ∈ R; that is, γ(t ) ∈ Fix(r0,V ) for all t . We call this

subgroup simply D1 (even though it is really D1 × {0} <D3 ×S1).

ii) If θ(r0) = 1/2, then Σγ = {(I ,0), (r0,1/2)}. This says γ(t +1/2T ) = r0γ(t ).

This is denoted D̃1, the tilde over the top telling us that there is a time

component to the symmetry.

The two possibilities with H = D1 are therefore (D1,0) and (D1,θ1), where

θ1(r0) = 1/2.

• For H = Z3 = 〈R2π/3〉, let us find the homomorphisms θ : Z3 → S1. Now,

θ(R3
2π/3

) = 3θ(R2π/3) mod Z. But R
3
2π/3

= I and thus 3θ(R2π/3) = 0 mod Z.

Possibilities are θ(R2π/3) = 0, 1
3 , 2

3 . Analogous to the previous case (where

H = Z2), if θ(R2π/3) = 0, then γ(t ) ∈ Fix(R2π/3) = Fix(Z3) and this is denoted

Z3.

If θ(R2π/3)= 1
3 , then

Σγ = {(I ,0), (R2π/3, 1/3), (R4π/3, 2/3)}.

This says γ(t + 1
3 T ) = R2π/3γ(t ). This is denoted C̃3 (because of the time com-

ponent). The final possibility θ(R2π/3) = 2/3 is similar, and is also denoted C̃3.

• Finally, for H =D3, there are the following homomorphisms:

– θ :D3 → {0} the trivial homomorphism,

– θ(r0) = 1/2 and θ(R2π/3) = 0. NB: kerθ is a normal subgroup of D3 (and

we have seen that C3 ⊳D3 is the only non-trivial one).

6.2 Animal gaits

Animal gaits provide an interesting example of periodic motion with symmetry, for a

system treated as coupled cells. We discuss briefly one example here, while further
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information can be found in Chapter 3 of the book by Golubitsky and Stewart [6], and

in papers cited in that book.

Imagine a 4-legged animal (horse, dog, elephant, camel . . . ) and model each of

the 4 legs, or rather its control mechanism, as a single cell (which would be the first

level of modelling: rather naïve, but let’s see how far we get). Label these cells FL, FR,

HL, and HR (FL = Front Left and HR = Hind Right, etc.). Biologically, each cell could

represent a group of neurons whose ‘firing’ controls the movement of the leg.

the 4 cells:

FLHL

FRHR
forwards

The question is, how should these be coupled? One would expect the coupling

between the right legs to be the same as between the left legs, and that coupling from

right to left is the same as from left to right. This gives a left-right Z2 symmetry.

However, any further assumptions on the coupling, and consequent symmetries,

would be more contentious. Would there be a front-back symmetry? The fact that

quadrupeds prefer to walk forwards may be due to a lack of symmetry in the coupling,

but it also might be due instead to the shape of legs and knees. However, a rotational

symmetry by π/2 seems less likely: there would probably be a different coupling be-

tween FR and FL than between FR and HR.

Let us therefore suppose a coupling with symmetry Z2 ×Z2 =D2:

FLHL

FRHR

Question: what are the possible symmetries of periodic motions for a system with this

symmetry?

Answer: The group is D2. Let us call the generators σ1,σ2, where, as permutations of

the cells,

σ1 =
(

F L F R HL HR

F R F L HR HL

)
, and σ2 =

(
F L F R HL HR

HL HR F L F R

)
.

That is, σ1 swaps right and left, and σ2 swaps front and hind legs. The product σ1σ2

‘rotates the animal’ by π.

There are 11 spatio-temporal subgroups of D2 × S1 (see Problem 6.3) but only

some of these are seen as gaits:
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SYMMETRIES OF PERIODIC MOTION 6.7

Trot When a horse is trotting, the diagonal pairs of legs hit the ground in unison:

(FL+HR), (FR+HL) each pair half a period out of phase. This corresponds to the

symmetry group

Σtrot = 〈(σ1, 1/2), (σ2, 1/2)〉 .

Thus (σ1σ2,0) is a symmetry, telling us that FL and HR move together, as do FR

and HL.

Pace This is a common gait for camels, and occurs when the legs on the same side

move in unison, (FL+HL), (FR+HR). The symmetry of this is

Σpace = 〈(σ1, 1/2), (σ2,0)〉 .

Bound Here the front legs move in unison, and the hind legs in unison: (FR+FL),

(HR+HL). The symmetry group is

Σbound = 〈(σ1,0), (σ2, 1/2)〉 .

Pronk Here all four legs move in unison (a jump), and is sometimes seen in young

lambs or deer. The spatio-temporal symmetry group (if the pronking is peri-

odic) is therefore purely spatial, with Σpronk =D2.

Gallop Here we take the sequence to be HL, HR, FL, FR. This has symmetry

Σgall = 〈(σ2, 1/2)〉 .

This symmetry group does not determine the sequence of motions, as it doesn’t

tell us for example, that HR comes mid-way between HL and FL, it could be at

any time in the cycle.

To gain more information about the gallop would require a symmetry group with

an element of order 4 coupled with a phase change of 1/4. Moreover, in reality a gallop

is more complex than indicated, as there is a ‘pause’ or ‘suspension’ between the FR

and HL giving a total period of more than 4 ‘beats’ (where a beat is the time interval

between successive legs hitting the ground). One approach is to allow more cells in

the model, see [6, Sec. 3.5] for a model with 8 cells.

6.3 Existence of symmetric periodic orbits in mechanical sys-

tems

In the previous section we described how to find all possible symmetries of periodic

orbits of symmetric systems, but with no thought to whether they actually exist. We

end with a result that guarantees the existence of periodic orbits with certain symme-

tries. This is the ‘simplest possible’ theorem in this direction; more general statements

can be obtained with weaker hypotheses but require more detailed knowledge of the

specific system.

In particular, this approach requires that W is an irreducible representation of G :

First we need to define a mechanical system.
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6.8 § 6.3 Existence of symmetric periodic orbits in mechanical systems

Definition 6.6. A mechanical system on W consists of two functions, kinetic energy

K : W → R which is a positive definite quadratic form on W , and potential energy

which is a smooth function V : W →R. If W is a representation of a group G then the

mechanical system is said to have symmetry G provided both K and V are invariant.

✯

Given the kinetic and potential energies, the equation of motion is given by what

is essentially Newton’s second law,

Kẍ = −∇V (x), (6.4)

where K is the (invertible) symmetric matrix of the kinetic energy quadratic form:

K (x) = 1
2

xT
Kx ( we won’t be using this again). With this notation, it is easy to check

that K is G-invariant if and only if gK=Kg (for all g ∈G).

Definition 6.7. A representation W of G is irreducible if the only subspaces W ′ of W

which are invariant under G , are W ′ = {0} and W ′ =W . ✯

The importance of being irreducible is that, if V is an invariant potential energy,

then (i) W G = {0} so the origin is a critical point of V , and (ii) both the Hessian matrix

of V at the origin and the kinetic energy matrix K are scalar multiples of the identity.

We will need to assume the Hessian of V is a positive multiple of the identity (which

implies that the origin is a stable equilibrium).

Consider now the complexification of W , written W C. If {e1, . . . ,en} is a basis for

W , then elements of W are linear combinations of these vectors with real coefficients.

The complex vector space W C is given by taking linear combinations of the same basis

vectors, but now allowing complex coefficients:

W =
{

n∑

j=1

x j e j | x j ∈R

}
,

W C =
{

n∑

j=1

z j e j | z j ∈C

}
.

For example complexifying W =R
n yields W C =C

n .

Now G acts on W in a way where all the elements are represented by n ×n matri-

ces. One can therefore define an action of G on W C by using the same matrices. For

example, Rφ ∈ SO(2) acts on C
2 by

Rφ ·
(

z1

z2

)
=

(
cosφ −sinφ

sinφ cosφ

)(
z1

z2

)
=

(
cosφz1 −sinφz2

sinφz1 +cosφz2

)

Moreover (and this is the reason for using complex numbers), we can define an

action of S1 on C
n by θ ·z = e2πiθz (scalar multiplication). That is,

θ ·
(
∑

j

z j e j

)
=

∑

j

(e2πiθz j )e j .
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SYMMETRIES OF PERIODIC MOTION 6.9

For example for n = 2,

θ ·
(

z1

z2

)
=

(
e2πiθz1

e2πiθz2

)
.

Combining this with the given action of G on W and hence on W C we obtain an action

of G ×S1 on W C (since S1 acts on W C by multiplication by scalars, it commutes with

the action of G , which is linear). Specifically,

(g ,θ) ·v = e
2πiθg v. (6.5)

Moreover, an argument analogous to the proof of Proposition 4.10 shows that the

fixed point space of any subgroup Σ<G ×S1 is a complex subspace of W C.

Before stating the main theorem, let us examine how to find fixed point subspaces

for the G ×S1 action. Let (g ,θ) ∈G ×S1, and let v ∈W C be a non-zero vector. Then, by

Eq. (6.5), v is fixed by (g ,θ) if e2πiθg v = v. This can be written

g v = e
−2πiθv. (6.6)

That is, v is fixed by (g ,θ) if and only if v is an eigenvector of g with eigenvalue e−2πiθ.

Thus, v ∈ Fix(Σ,W C) if for each g ∈ H = π(Σ) there is a θ = θ(g ) (ie, depending on

g ) such that v is an eigenvector of g with eigenvalue e−2πiθ. In particular v must be an

eigenvector of g for every g ∈ H .

In this way, finding fixed point spaces is equivalent to finding eigenvectors of ma-

trices. We will see this in action in the example below.

Definition 6.8. A subgroup Σ≤G ×S1 is complex-axial if dimC Fix(Σ,W C) = 1. ✯

Theorem 6.9. With this set up (assuming W to be irreducible and the Hessian of

the potential to be positive definite), if Σ≤G ×S1 is complex-axial, then in every

neighbourhood of the origin, there are periodic orbitsγwith symmetry group Σγ =
Σ.

We omit the proof of this theorem: it follows from the main existence theorem in

[11], see also the book [6].

Example 6.10. We can use this theorem to prove the existence of periodic orbits

with symmetries Z2, Z̃2, C̃3 in the 3-spring problem, see Figure 6.1(a), provided the

origin is a stable equilibrium point (positive definite Hessian of the potential). Here

we show how the C̃3 and Z̃2 arise (the other is left to the reader but doesn’t involve

any eigenvalues).

First consider the subgroup C3 of D3, which is generated by R2π/3. The matrix

of this generator is (
−1/2 −

p
3/2p

3/2 −1/2

)
.

The eigenvalues of this matrix are found to be e2πi/3 and e−2πi/3 (or equivalently,

−1
2 ± i

p
3

2 ). An eigenvector of R2π/3 with eigenvalue e2πi/3 is (1, −i)T , and for the
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eigenvalue e−2πi/3 one is (1, i)T .

This shows us that (R2π/3, 1/3) ·v = v, for v =
(
1

i

)
, or indeed for v =

(
λ

λi

)
, for any

λ ∈C. Consequently

Fix(R2π/3, 1/3) =
{

(λ,λi )T |λ∈C
}

which is a 1-dimensional subspace of C2, showing that the subgroup C̃3 is complex-

axial. Using the other eigenvalue, we see that

Fix(R2π/3,−1/3) =
{

(λ,−λi )T |λ ∈C
}

showing that this group C̃′
3 is also complex-axial.

Now consider the subgroup Z2 = D1 of D3 which is generated by r0. The ma-

trix of r0 is

(
1 0

0 −1

)
whose eigenvalues are ±1. The +1 eigenvalue has eigenvec-

tor (1, 0)T and the −1 eigenvalue has eigenvector (0, 1)T . Both eigenspaces are 1-

dimensional, and the +1 eigenspace is fixed by (r0,0) ∈D3×§1, generating the sub-

group D1, while the −1 eigenspace gives rise to a complex-axial subgroup denoted

D̃1 which is generated by (r0, 1
2 ) ∈D3 ×S1. These two complex-axial subgroups are

both of order two (their projections to D3 are both equal to D1).

Therefore we can apply the theorem above to conclude the existence of peri-

odic orbits with symmetry C̃3, D1 and D̃1, which are shown in Figure 6.1(a). (The

difference between C̃3 and C̃′
3 is that the first runs anticlockwise while the second

runs clockwise.

In Figure 6.1(b), note that the almost circular periodic orbits have symmetry Z̃4

(as stated on p. 6.2), while the horizontal brown orbit (on the x-axis) has symmetry

D̃2, where

D̃2 = {(I ,0), (r0,0), (rπ/2, 1/2), (Rπ, 1/2)}.

Recall that D2 = 〈r0, rπ/2〉 = 〈r0, Rπ〉. The fact that (r0,0) ∈ Σγ implies that for all t ,

r0γ(t )= γ(t ), which explains why γ(t ) lies on the x-axis.

6.4 Problems

6.1 Use the property of uniqueness of solutions of ODEs to show that if γ is a solu-

tion for which there is a T > 0 such that γ(T ) = γ(0) then γ(t +T ) = γ(t ) for all

t ∈R.

6.2 Consider a system of 3 identical coupled cells with symmetry S3. Draw the

cell diagram for such a system. Let γ(t ) be a periodic orbit with symmetry Z̃2

generated by ((1 2), 1
2 ) ∈ S3 ×S1 and period T . State the relation between the 3

cells after half a period, and deduce the period of cell 3.

6.3 By considering the subgroups of G =D2 ≃ Z2 ×Z2 and all possible homomor-

phisms from these to S1 = R/Z, find all possible symmetry groups of periodic
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SYMMETRIES OF PERIODIC MOTION 6.11

orbits in a system with D2 symmetry. [Hint: there are 5 subgroups, and these have

1, 2, 2, 2 and 4 homomorphisms respectively giving 11 possible symmetry groups in

all.]

6.4 Use the symmetry to justify the last sentence of Example 6.10.

6.5 Repeat Example 6.10, but for the D4 action on R
2, showing the existence of pe-

riodic orbits with symmetries shown in Figure 6.1(b).

6.6 Find all 27 complex-axial symmetry groups of the action of Td on R
3 described

in Section 4.5.

6.7 Suppose G acts on R
n and let X denote the space of all continuous maps γ :

S1 →R
n . There is an action of G ×S1 on this space: if γ ∈ X then define (g ,θ) ·γ

to be the map,

((g ,θ) ·γ)(t ) = g · (γ(t −θ)).

Verify that this defines an action, and show that the stabilizer of an element γ

is precisely its symmetry group Σγ.
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