
Chapter 5

Symmetric systems of ODEs

A system of first order ODEs in n variables is an equation of the form

b

x = f (x) (autonomous) or
b

x = f (x, t ) (non-autonomous)

where x = (x1, . . . , xn)T ∈R
n and f : Rn →R

n , or f : Rn×R→R
n (respectively). We con-

centrate on autonomous systems, but most of the ideas carry across without change

to non-autonomous ones. A solution is a map γ : (−ε,ε) → R
n satisfying d

dt
γ(t ) =

f (γ(t )), for some ε > 0. The general existence and uniqueness theorem states that,

if f is smooth, then given any initial condition x0 ∈ R
n , there exists a unique smooth

solution γ(t ) satisfying γ(0) = x0.

Unfortunately, in general one can only guarantee local solutions. The only general

setting where global solutions are guaranteed is where f (x, t ) is linear in x.

In this chapter we introduce some of the ideas used in studying symmetric sys-

tems of ODEs; further theory, and some applications, can be found in the book The

Symmetry Perspective by M. Golubitsky & I. Stewart [6]. Historically, the systematic

understanding of symmetry properties of solutions of differential equations using

group actions began in the early 1980s, with two foundational papers by the physi-

cist Louis Michel [10] and by the mathematician Michael Field [5].

5.1 Symmetry in ODEs

Recall the example of 4 identical springs described in Chapter 4. The first idea is sim-

ple: if you consider the solution to the ODE (which is derived from Newton’s laws of

motion) for a given initial condition, and then reflect the initial condition one expects

to get the reflected solution, and similarly for rotated initial conditions.

Now, consider V to be a representation of as group G (i.e, G is a group of matrices

acting on V by matrix multiplication).

Definition 5.1. The ODE
b

x = f (x) for x ∈ V has symmetry G if the map f is equivari-

ant; that is, if f (g ·x) = g · f (x) for all g ∈G and x ∈V . ✯
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5.2 § 5.1 Symmetry in ODEs

This definition is justified by the following property of symmetric ODEs.

Proposition 5.2. Suppose
b

x = f (x) is a symmetric ODE on V and γ : (−ε,ε) →
V is the solution with initial condition γ(0) = x0, then the solution with initial

condition g ·x0 is g ·γ(t ).

Proof: For each t ∈ (−ε,ε), settingδ(t ) = g ·γ(t ) defines a smooth curveδ : (−ε,ε) →
V . Clearly, δ(0) = g · x0 so δ satisfies the initial condition. Furthermore, we check

that

d

dt
δ(t ) =

d

dt
g ·γ(t )

= g ·
d

dt
γ(t ) as g is a constant matrix

= g · f (γ(t )) because γ(t ) is a solution

= f (g ·γ(t )) by equivariance

= f (δ(t )),

so indeed δ is a solution. ❒

Example in one variable. Consider the ODE
b

x =−x. Here, f (x) =−x. The general

solution is x(t ) = Ae−t . If the initial condition is x0 = a, then the unique (global)

solution is γ(t ) = ae−t . This ODE has Z2-symmetry where Z2 = 〈r 〉 and r is reflection

in the origin: r ·x =−x. To see that f is Z2-equivariant, just check: f (r ·x)= f (−x) = x

and r · f (x) = r · (−x) = x so f (r · x) = r · f (x) as required. If γ(t ) = ae−t , then the

solution with initial condition x = r ·a =−a is δ(t ) = (−a)e−t = r ·γ(t ) as predicted by

the proposition above.

Example in two variables. We work on R
2 with f (x, y) = (y + x3, x + y3)T . This

arises from the ODE
{ b

x = y +x3
b

y = x + y3

This is impossible to solve analytically. However, let us find the symmetries of this

ODE. An obvious symmetry is the one that swaps the variables x and y . This is just

multiplying by the matrix σ=
(

0 1

1 0

)

. Let’s check that f is equivariant with respect to

this transformation. On the one hand,

f (σ(x, y)) = f (y, x)=
(

x + y3

y +x3

)

,

while on the other

σ( f (x, y))=
(

0 1

1 0

)(

y +x3

x + y3

)

=
(

x + y3

y +x3

)

,
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SYMMETRIC SYSTEMS OF ODES 5.3

showing that indeed f ◦σ = σ◦ f . Another symmetry is Rπ = −I : a short calculation

shows f (Rπ(x, y)) = f (−x,−y) =
(

−y −x3

−x − y3

)

and Rπ f (x, y) = −
(

y +x3

x + y3

)

are equal. So

G = 〈σ,Rπ〉 =D′
2 ≃ Z2 ×Z2 (this is conjugate to the usual D2). This tells us that if γ(t )

is one solution, then σγ(t ),Rπγ(t ) and σRπγ(t ) are also solutions (note that σ= rπ/4

and σRπ = r−π/4).

One of the most important properties of symmetric ODEs is given by the following

theorem: it says that ‘symmetry is preserved’ by solutions of ODEs. Recall that V H =
Fix(H ,V ) is the subset of V of points fixed by the elements of the subgroup H .

Theorem 5.3 (Conservation of Symmetry). Suppose the ODE
b

x = f (x) on V has

symmetry group G. Let H ≤G be a subgroup and assume x0 ∈ V H . Let γ(t ) be the

unique solution with initial condition γ(0) = x0. Then, γ(t ) ∈ V H for all t in the

domain of γ.

This and Proposition 5.2 are two examples of the symmetry principle in the con-

text of differential equations: the proposition states that if an ODE has a given sym-

metry then so does its set of solutions, while the theorem states that if an initial value

problem has a certain symmetry, then so does the (unique) solution.

Proof: Write D ⊂R for the domain of γ. For a fixed h ∈ H , let δ(t ) := h ·γ(t ) for t ∈
D. By Proposition 5.2, δ(t ) is the solution with initial value δ(0) = h ·x0 = x0. Since

γ and δ are both solutions satisfying the same initial condition, the uniqueness

theorem implies that δ(t ) = γ(t ); that is, h ·γ(t ) = γ(t ) for all t ∈ D. Since h ∈ H is

arbitrary, γ(t )∈V H for all t ∈ D. ❒

In the example above in R
2, this tells us that if the initial condition is fixed by σ, so

is of the form (x0, x0), then the solution will also be fixed by σ: it will satisfy y(t )= x(t )

for all t for which it is defined. And indeed putting y = x gives
b

x= x + x3, which can

be integrated to give x(t ) = y(t ) = ± 1p
Ce−2t−1

(where the sign ± and the constant of

integration C depend on the initial condition x0).

5.2 Coupled cell systems

Coupled cell systems are systems of ODEs where each cell corresponds to 1 variable,

and they interact so that the evolution (or rate of change) of each cell depends on its

own state as well as the state of some of the other cells. This point of view is particu-

larly useful when there is symmetry in the system which permutes the cells (ie, some

of the cells are identical).

In applications, the variables could correspond to concentrations of chemicals in

a reaction, to electronic components in a circuit, to excitation levels of biological cells

in an organism, to population levels in an ecological system, . . .

One usually assumes that if none of the cells are ‘excited’ (ie, all variables are equal

to zero) then the system is in equilibrium.
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5.4 § 5.2 Coupled cell systems

Examples 5.4. Here we give two examples of coupled cell systems, with 3 and 4

cells respectively.

3 identical coupled cells: Consider the system of ODEs















b

x1 = −x1 +x2
2 +x2

3
b

x2 = −x2 +x2
1 +x2

3
b

x3 = −x3 +x2
2 +x2

3 .

The cell-diagram for this system is: 1

2

3

In the cell diagram, each cell has one variable: cell 1 corresponds to x1, cell 2 to

x2, and so on. An arrow from cell A to cell B means that information flows from

A to B , which in differential equations means that the evolution of B depends on

the state of A (i.e
b

xB depends on xA). In this example the arrows point both ways

as cell 1 depends on cell 2 and vice versa. This system has S3 symmetry, acting by

permuting the cells.

4 identical coupled cells: Consider the system of 4 coupled ODEs,



























b

x1 = −2x1 +x2
2

b

x2 = −2x2 +x2
3

b

x3 = −2x3 +x2
4

b

x4 = −2x4 +x2
1.

cell-diagram:

12

3 4

Notice that the arrows are unidirectional in this example. One can check (by

substituting x2 for x1, x3 for x2 etc) that this system is invariant under the cyclic

group Z4 = 〈(1234)〉, and is not invariant under any other permutation.

The general definition of symmetry for a coupled cell system (or network) is the

© University of Manchester JM, March 15, 2020



SYMMETRIC SYSTEMS OF ODES 5.5

following.

Definition 5.5. Let x = (x1, . . . , xn) and consider a family of n functions fi : Rn → R.

The coupled cell system
b

xi= fi (x) for i = 1, . . . ,n has symmetry G if the map (or vector

field)
F : Rn → R

n

x 7→ ( f1(x), . . . , fn(x))

is G-equivariant. Moreover, the cells are said to be identical if G acts transitively on

the set of cells. ✯

Thus in both of the examples above, the cells are identical.

Example 5.6. where the cells are not identical. Consider the coupled cell system,






b

x1 = −x1 +x2
2 +x3

b

x2 = −x2 +x2
1 +x3

b

x3 = −x3 +x1x2.

Notice that exchanging x1 and x2 leaves the system

unchanged, but any permutation with x3 does not.

The symmetry group is therefore just G = S2 = Z2 =
{e, (1 2)}, and the cells are not identical. In the cell-

diagram we use different arrow types to show that the

couplings are different, and even different boxes to

show cell 3 is not identical to cells 1 and 2 (which are

identical).

3

1

2

Recall that a stabilizer subgroup H ≤G is axial if dim(V H )= 1 where V is a repre-

sentation of G . In these systems, the first analysis is to search for axial subgroups. For

instance, consider the system in the plane,
{ b

x = −x + y3
b

y = −y +x3 (5.1)

This system has symmetry group G =Z2×Z2 = 〈(12),Rπ〉. (Geometrically, in the plane,

the tranposition (1 2) corresponds to the reflexion rπ/4, so the group is conjugate to

D2.) The axial subgroups are H1 := 〈(1 2)〉 = 〈rπ/4〉 and H2 := 〈r−π/4〉. The correspond-

ing fixed point sets are V H1 = {(x, x) | x ∈R} and V H2 = {(x,−x) | x ∈R} respectively. So

H1 and H2 are both axial subgroups. On V H1 , the system (5.1) reduces to

b

x = −x +x3.

This can be solved using separation of variables: integrate
∫

d x

x3 −x
=

∫

d t .

One obtains, x(t ) = y(t ) = 1p
Ce2t+1

, where the constant of integration C depends on

the initial condition. On V H2 , (5.1) reduces to

b

x=−x −x3 (5.2)
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5.6 § 5.3 Problems

and this can be easily solved as well, with x(t )=−y(t )= 1p
Ce2t−1

. Solving each of these

give some special solutions of the original system (it tells us nothing about solutions

outside of these fixed point spaces, but it’s a start to understanding the system).

In a previous example, we looked at the following system of 4 coupled cells:



























b

x1 = −2x1 +x2
2

b

x2 = −2x2 +x2
3

b

x3 = −2x3 +x2
4

b

x4 = −2x4 +x2
1.

(5.3)

It has symmetry group G =Z4 = 〈(1234)〉. The subgroups of G are

Z4, Z2 = 〈(13)(24)〉 and the trivial subgroup 1.

Their respective fixed point sets are as follows. First,V 1 = R
4 (then 1 is clearly not

axial). Next, V Z2 = {(x1, x2, x3, x4) | x1 = x3, x2 = x4}. The latter is 2-dimensional with

basis {(1,0,1,0)T , (0,1,0,1)T } so Z2 is not axial either. The remaining subgroup is Z4

itself. Its fixed point set is V Z4 = Span
(

(1,1,1,1)T
)

and is thus 1-dimensional. Thus

Z4 is axial. On V Z4 , the system (5.3) reduces to
b

x1= −2x1 + x2
1 which can be solved

again by using separation of variables. In particular, there are 2 equilibrium points

on this axis. Indeed, those equilibria correspond to the solutions of 0 = −2x1 + x2
1 =

x1(−2+x1). The axial equilibria are therefore (0,0,0,0)T and (2,2,2,2)T .

5.3 Problems

5.1 Let Z2 = 〈r 〉 act on Rby r ·x =−x. Show that the differential equation
b

x= sin(2x)

has symmetry group Z2. Let x(t ) be the solution with initial value x(0) = 1,

and let u(t ) be the solution with initial value u(0) =−1. How are x(t ) and u(t )

related?

5.2 Let D3 be the usual dihedral subgroup of order 6 of O(2), generated by r0 and

R2π/3. Consider the system of ODEs

{ b

x = x +x2 − y2
b

y = y −2x y

(a) Show this system has D3 symmetry.

(b) List all three axial subgroups of D3. By choosing one of these, find all equi-

libria of this system with axial symmetry, and explain briefly why it is enough

to consider only one of the axial subgroups.

5.3 Let L be an n ×n matrix, and consider the first order ODE
b

x = Lx on R
n . Show

this is equivariant for a linear action of a group G if and only if L commutes

with all the matrices in the representation of G .
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SYMMETRIC SYSTEMS OF ODES 5.7

5.4 Consider the following family of system of ODEs in the plane

{ b

x = ax +x2 − y2
b

y = a y −2x y

Here a ∈ R is a parameter. This is similar to the previous question, and the

system has D3 symmetry. Describe the bifurcations of equilibrium points that

occur on the lines of symmetry as a is varied through a = 0.

5.5 Consider the similar system with symmetry D4:

{ b

x = x +x3 −3x y2
b

y = y −3x2 y + y3.

(a) Show this system has D4 symmetry.

(b) List all axial subgroups of D4, and find all equilibria of this system with axial

symmetry. Explain briefly why in this case it is not enough to consider only one

of the axial subgroups.

5.6 Check that the two systems in Examples 5.4 have symmetry S3 and Z4 respec-

tively.

5.7 Consider the following system of ordinary differential equations,







b

x = −x + y z2
b

y = −y +xz2

b

z = z(1+x y − z2).

(∗)

Consider the action of the group G ≃Z2 ×Z2 ×Z2 generated by the matrices

A =





−1 0 0

0 −1 0

0 0 1



 , B =





1 0 0

0 1 0

0 0 −1



 , C =





0 1 0

1 0 0

0 0 1



 .

(i). Show that the matrices A,B ,C do indeed generate a group isomorphic to

Z2 ×Z2 ×Z2 (you need to show that A2 = I etc, and A,B ,C all commute).

(ii). Show that the system (∗) has symmetry G .

(iii). Deduce that the x-y plane and the z-axis are each invariant under the

evolution of the system, stating carefully any results used.

(iv). Can you find other invariant subspaces?

(v). Find all the equilibrium points that lie on these subspaces.

(vi). Find the unique solution to this system with initial value (x, y, z)= (1,1,0).

What is the limit as t →∞ of this solution?

5.8 † The octahedral group Oh is the group of all symmetries of the cube (including

reflections). With vertices at the 8 points (±1, ±1, ±1), it is generated as follows.
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5.8 Problems

x

y

z
Generators:

Rz =





0 −1 0

1 0 0

0 0 1





Rd =





0 0 1

1 0 0

0 1 0



,

rz =





1 0 0

0 1 0

0 0 −1





Here Rz is a rotation about the z-axis by π/2, Rd is a rotation by 2π/3 about the

diagonal x = y = z, and rz is the reflection in the x-y plane.

Consider the following family of potential functions in 3-D:

V =λ
(

x2 + y2 + z2
)

−2
(

x4 + y4 + z4
)

+3
(

x2 y2 + z2x2 + z2 y2
)

,

(this is an approximation to the system of 8 identical springs each attached to

the vertex of a cube, and all attached to a common particle).

(i) Show V has symmetry Oh (it is enough to show it is invariant under the 3

given generators).

(ii) Show that the lines L1 = {(0,0, z) | z ∈ R} and L2 = {(x, x,0) | x ∈ R}, and

L3 = {(x, x, x) | x ∈ R}, are all 1-dimensional fixed point spaces, and find the

corresponding axial subgroups. [Hint: sketch each of these lines on the figure

with the cube.]

(iii) Find critical points (equilibria) occurring in these 1-dimensional fixed-

point subspaces, and describe how these appear/disappear as λ varies (i.e.,

the bifurcations involved).

(iv) Find the other 1-dimensional fixed point spaces (all others are equivalent

under the summery group Oh to L1,L2 or L3), and list the corresponding equi-

librium points.
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