
Chapter 4

The symmetry principle

Lorsque certaines causes produisent certains ef-

fets, les éléments de symétrie des causes doivent

se retrouver dans les effets produits.

Pierre Curie, 1894

Where certain causes produce certain effects,

the symmetries of the causes are found in those

effects.

This quote (with my translation) is known as Curie’s principle, and is named af-

ter the famous physicist Pierre Curie1 who was interested in the effects of symmetry,

There are many philosophical discussions about the truth of this principle, mostly

based on interpreting the words ‘cause’ and ‘effect’. A mathematical version which is

less contentious can be stated thus:

The symmetries of a problem are found in the solution.

It is important to emphasize that this refers to ‘the solution’, not ‘each solution’.

For a simple example to illustrate what I mean, consider the problem of solving the

equation x2 = 4 for x ∈ R. This has Z2 symmetry generated by x 7→ −x. However the

one solution x = 2 does not have this symmetry. On the other hand, ‘the’ solution to

the problem is the set {2, −2}, which does have the same symmetry as the problem.

Thus, a less ambiguous and more modern phrasing would be,

The symmetry principle:

if a problem has symmetry then the set of solutions shares that symmetry

This is a ‘principle’ and not a ‘theorem’ because there is no general definition of

a ‘problem’. However, as we will see in this and following chapters, as soon as one

1Pierre Curie, 1859–1906; physicist, winner of the Nobel Prize for Physics in 1903 (and husband of

Marie Curie). The Nobel prize (won jointly with Marie Curie) was for the discovery of radium, but he

also made important contributions to crystallography and he discovered the piezoelectric effect. This

quote is taken from the Œuvres de Pierre Curie, Gauthier-Villars (1908), p.119.
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4.2 § 4.1 Invariant functions

specifies what a ‘problem’ is, one can turn it into a theorem. For example, finding

solutions of polynomial equations like the example above, or solving ordinary differ-

ential equations, are both types of ‘problem’ where a general theorem can be stated.

Almost all of the various realizations of the symmetry principle rely on having an

equivariant map: recall (Definition 1.12) that a map φ : V →W is equivariant if

φ(g ·v) = g ·φ(v) (for all v ∈V and all g ∈G).

The property of equivariant maps that underlies the symmetry principle is this,

and given its importance it has a surprisingly simple proof:

Theorem 4.1. Let φ : V → W be equivariant. Let v ∈ V and w = φ(v). Then,

Gv ≤Gw. Equivalently, if g ·v = v, then g ·w = w.

Proof: Let g ∈Gv. Then g ·w = g ·φ(v) =φ(g ·v) =φ(v) = w so g ∈Gw. ❒

4.1 Invariant functions

For this section, we will restrict attention to actions of groups on vector spaces, be-

cause we want to do calculus.

Definition 4.2. Let V be a finite dimensional vector space. A linear action of a group

G on V is a homomorphism ρ : G → GL(V ) where GL(V ) is the group of invertible

linear maps V →V . ✯

Linear actions are also called2 representations. If we choose a basis for V , then

each ρ(g ) is an invertible n ×n matrix (where n = dimV ). So here, an element g ∈ G

acts on V by standard matrix multiplication; that is, g ·v = ρ(g )v.

In fact we will assume that the representation of G on V is an orthogonal repre-

sentation meaning that ρ : G → O(V ) (that is, for each g ∈ G , ρ(g ) is an orthogonal

matrix, so satisfies ρ(g )ρ(g )T = I ). (This is not really restrictive: for a finite group one

can always choose a basis for which this is true.)

Examples We have already seenCn andDn acting on R
2 in this way. Other examples

are the symmetries of the tetrahedron and the cube in R
3.

Definition 4.3. A function f : V →R is said to be invariant if f (g ·v) = f (v) for every

g ∈G and every v ∈V . ✯

2Representation theory is the study of representations, often over different fields, and is a substantial

and active branch of algebra
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THE SYMMETRY PRINCIPLE 4.3

Note that to show a given function is invariant under a group, it suffices to check

it for the generators of the group: see the example below.

Recall that, if f : X → Y is a map, then for y ∈ Y , one denotes the corresponding

level set of f by,

f −1(y)= {x ∈ X | f (x) = y}.

Proposition 4.4. If f : V →R is invariant, then for any a ∈R, the set f −1(a) is an

invariant subset of V ; that is, if u ∈ f −1(a) then g ·u ∈ f −1(a) for every g ∈G.

This is an example of the symmetry principle: the ‘problem’ f (u)= a has symme-

try G (since f is G-invariant), and the proposition says that the set of solutions also

has symmetry G .

Proof: Suppose f (u)= a. We need to show that f (g ·u) = a. But f (g ·u)= f (u)= a

since f is invariant. ❒

Example Consider the usual action of D3 on R
2, as discussed in Chapters 1 and 2.

D3 is generated by R2π/3 and r0. Let f (x, y) = x3 −3x y2 + x2 + y2. We claim that f is

invariant. To see this, it suffices to show it is unchanged under composing with r0 and

R2π/3. For r0 we get

f ◦ r0(x, y) = f (x,−y)

= x3 −3x(−y)2 +x2 + (−y)2

= f (x, y).

For R2π/3, recall that R2π/3 =
(

cos(2π/3) −sin(2π/3)

sin(2π/3) cos(2π/3)

)

, with cos(2π/3) = −1/2 and

sin(2π/3) =
p

3/2. Thus,

f ◦R2π/3(x, y) = 1
8

(−x −
p

3y)3 − 3
8

(−x −
p

3y)(
p

3x − y)2 +

+1
4

(−x −
p

3y)2 + 1
4

(
p

3x − y)2

= f (x, y).

Since f is invariant under both r0 and R2π/3 it is invariant under the group they gen-

erate, which is D3. For example, f ◦ (r0R2π/3) = ( f ◦ r0) ◦ R2π/3 = f ◦ R2π/3 = f , and

f ◦R4π/3 = ( f ◦R2π/3) ◦R2π/3 = f ◦R2π/3 = f . In Fig. 4.1 we see that the level sets (or

contours) of f are invariant sets.

4.2 Critical points of invariant functions

There are many problems in applied mathematics (or physics or chemistry) where

the solution is given by the critical points of a function. If that function is invariant
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4.4 § 4.2 Critical points of invariant functions

b

Color code:

f (x, y) =−1

f (x, y) = 0

f (x, y) = 0.1

f (x, y) = 4/27 ≈ 0.148

f (x, y) = 1

FIGURE 4.1: Level sets of the invariant function f (x, y) = x3 −3x y2 +
x2 + y2. The grey lines are the lines of reflection for the D3 action. No-

tice that each of the coloured sets is invariant under the action of D3.

The value 4/27 is the value of f at each of its three saddle points.

under a group action, then the symmetry principle says that the set of solutions (set

of critical points) should also be invariant. We state this below in Theorem 4.5, whose

proof is given on p.4.6.

Recall that a critical point of a differentiable function f is a point x for which
∂ f
∂x1

(x) = ∂ f
∂x2

(x)= ·· · = ∂ f
∂xn

(x) = 0.

The symmetry principle in this setting states:

Theorem 4.5. If f : V → R is invariant, then its set C ( f ) of critical points is an

invariant subset.

The proof can be divided into a few useful intermediate results.

Lemma 4.6. Let f : V →R be a G-invariant differentiable function. Then, its gradient

∇ f : V →V is equivariant.

Proof: We use the chain rule (see box on p. 4.5), with h(v) = g ·v = ρ(g )v. Now

the Jacobian matrix of h is just J(h) = ρ(g ). Thus, by (4.1),

∇( f (h(v))) = ρ(g )T∇ f (v).

Now we use the invariance of f , that is f (ρ(g )v) = f (v). Then, differentiating this,

ρ(g )T ∇ f (ρ(g )v) =∇ f (v).

Multiplying both sides by ρ(g ) gives

∇ f (ρ(g )v) = ρ(g )∇ f (v),

as required. ❒
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Chain rule in several variables Let U be an open subset of Rn , and write x =
(x1, . . . , xn) for a general point of U . The x j are called the coordinates of the point

x.

Now suppose f : U →R is a differentiable function. One writes f (x)= f (x1, . . . , xn)

and defines its gradient as being the column vector

∇ f = grad f =
(

∂ f

∂x1
, . . . ,

∂ f

∂xn

)T

.

Now let h : U → U be a differentiable map which reads h(x) = (h1(x), . . . ,hn(x))

again with respect to the coordinates (x1, . . . , xn). The chain rule states that, for

each i = 1, . . . ,n,
∂

∂xi
( f (h(x))) =

n
∑

j=1

∂ f

∂x j
(h(x))

∂h j

∂xi
(x).

The gradient of the composed map f ◦h : V →R thus reads

∇( f ◦h)(x) =
(

n
∑

j=1

∂ f

∂x j
(h(x))

∂h j

∂x1
(x), . . . ,

n
∑

j=1

∂ f

∂x j
(h(x))

∂h j

∂xn
(x)

)T

.

This can be written in matrix form as,

∇( f ◦h)(x)= J(h)T ∇ f (x), (4.1)

where J(h) is the Jacobian matrix of h: that is, J(h)k j = ∂hk

∂x j
.

Example Consider the function f (x, y)= x3 −3x y2. Then

∇ f =
(

3x2 −3y2

−6x y

)

.

Now let h(u, v) = (uv,2u), for which J(h) =
(

v u

2 0

)

. Then f ◦ h(u, v) = u3v 3 −

12u3v and hence

∇( f ◦h)(u, v)=
(

3u2v 3 −36u2v

3u3v 2 −12u3

)

=
(

v 2

u 0

)(

3x2 −3y2

−6x y

)

after substituting x = uv and y = 2u.
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Proposition 4.7. If φ : V →W is equivariant, then φ−1(0) is an invariant subset

of V .

Proof: Suppose v ∈ φ−1(0). We want to show that for any g ∈ G , g · v ∈ φ−1(0).

Now, φ(g ·v) = g ·φ(v) = g ·0 = 0, so we are done. ❒

We can now prove the theorem.

Proof of Theorem 4.5: A critical point v ∈C ( f ) is such that ∇ f (v) = 0. Therefore,

C ( f ) = (∇ f )−1(0). But ∇ f is equivariant (Lemma 4.6) so the result follows from

Proposition 4.7. ❒

It is perhaps worth emphasizing that the theorem does not say that all critical

points have non-trivial symmetry: this is a common misunderstanding.

Example 4.8. As in the previous example, we consider the function

f (x, y)= x3 −3x y2 +x2 + y2.

Its gradient is given by ∇ f (x, y)= (3x2−3y2+2x,−6x y+2y)T . Then, ∇ f = 0 implies

that

{

2y(1−3x) = 0

3x2 −3y2 +2x = 0
(4.2)

The set of solutions is

C ( f ) =
{

(0,0), (−2/3,0), (1/3,1/
p

3), (1/3,−1/
p

3)
}

.

These form two orbits; namely, {(0,0)} which has stabilizer D3, and

{

(−2/3,0), (1/3,1/
p

3), (1/3,−1/
p

3)
}

.

In the latter set, the stabilizer of (−2/3,0) is D1 = {I ,r0}, and hence the orbit type is

(D1), and this the Burnside type of the set of critical points is

B(C ( f )) = 1(D3)+1(D1).

© University of Manchester JM, March 18, 2020



THE SYMMETRY PRINCIPLE 4.7

4.3 Fixed point subspaces

Let ρ : G → GL(V ) be a representation of G on a (finite dimensional) vector space V ,

and let H ≤G .

Definition 4.9. The fixed point subspace of H is

V H = Fix(H ,V ) = {v ∈V | h ·v = v for any h ∈ H }.

This is the same as {v ∈V | H ≤Gv}. ✯

Example. Consider the linear representation of D3 on R
2. Let H =

〈

r0

〉

. Then,

Fix(H ,R2) is the x−axis. Notice that this is a vector subspace of R2, and that is a gen-

eral fact:

Proposition 4.10. V H is a vector subspace of V .

Proof: First, note that 0 ∈V H . Suppose u,v∈V H . We want to show λu+µv ∈V H

for all λ,µ ∈R. Let h ∈ H and consider

h · (λu+µv) = ρ(h)(λu+µv)

= λρ(h)u+µρ(h)v by linearity

= λu+µv.

But this holds for arbitrary h ∈ H and therefore λu+µv ∈V H . ❒

The following theorem, due to Richard Palais, is crucial to the use of symmetry in

the remainder of this chapter.

Theorem 4.11 (Principle of Symmetric Criticality). Let f : V → R be an in-

variant differentiable function where V is a representation of G. Let H ≤ G and

suppose v ∈V H . Then, v is a critical point of f if and only if it is a critical point of

the restriction f
V H : V H →R.

Proof: Since f is an invariant function, its gradient ∇ f is equivariant (Lemma

4.6). If v ∈ V H , then applying Theorem 4.1 to w = ∇ f (v) shows that ∇ f (v) ∈ V H

(see Fig. 4.2). There remains to interpret this in terms of the statement of the the-

orem.

Let k = dim(V H ) and choose a basis {e1, . . . ,en} for V with e1, . . . ,ek ∈ V H and

ek+1, . . . ,en ∈ (V H )⊥. Then

∇ f (v) = (a1, . . . , ak ,0, . . . ,0)T ∈V H

JM, March 18, 2020 © University of Manchester



4.8 § 4.3 Fixed point subspaces

v
∇ f (v)b

FIGURE 4.2: At points v of V H , ∇ f (v) also belongs to V H

for some real numbers a1, . . . , ak . So v is a critical point of f if and only if

∂ f

∂x1
(v) = ·· · =

∂ f

∂xk
(v) = 0. (4.3)

On the other hand f
V H = f (x1, . . . , xk ,0, . . . ,0) which has a critical point at v if and

only if (4.3) holds. ❒

Example 4.12. Let G = D3 and H =D1 = 〈r0〉, and consider f (x, y) = x3 −3x y2 +
x2 + y2, which is an invariant function (see Fig. 4.1). Its gradient is

∇ f (x, y) =
(

3x2 −3y2 +2x

2y(1−3x)

)

.

Now, V H is the line with equation y = 0 and substituting y = 0 into ∇ f gives

∇ f (x,0) =
(

3x2 +2x

0

)

.

That is ∂ f /∂y = 0 so a point of the form (x,0) is a critical point if and only if
∂ f
∂x = 0 at

that point, i.e. it is a critical point of f
V H , as predicted by the Principle of Symmetric

Criticality above. The same occurs for the other fixed point spaces, see Fig. 4.2 and

Problem 4.6.

In the following example, we consider a simple mechanical example consisting

of a mass connected to 4 springs, all with the symmetry of a square. The detailed

calculations are not simple but also not so important: it is the principles involved

that are important.

Example 4.13. Consider a system with four identical springs S1 , . . . ,S4 in the plane,

each attached to a vertex of a square and the other ends all attached to a single par-

ticle, which is free to move in the plane; see Fig. 4.3. Let (x, y) be the coordinates

of the particle. We assume all the springs are identical, in which case this system

© University of Manchester JM, March 18, 2020
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x

y

m

a−a

a

−a

FIGURE 4.3: Arrangement of 4 springs withD4 symmetry (see Example

4.13)

has D4 symmetry. We want to find the equilibrium configurations of this system.

Clearly, (x, y)= (0,0) is one equilibrium point (by symmetry!); are there any others?

A spring has a natural length ℓ. If the spring is displaced by a length x, the

potential energy is V = 1
2 k x2 because Hooke’s law says that F = −kx and F = −∂V

∂x .

Take k = ℓ= 1 (corresponding to choices of physical units of length and mass). For

each spring Si , let Vi be the potential energy associated to it. We find

V1 = 1
2

k
(

√

(x −a)2 + y2 −1
)2

, V2 = 1
2

k
(

√

x2 + (y −a)2 −1
)2

,

V3 = 1
2 k

(

√

(x +a)2 + y2 −1
)2

, V4 = 1
2 k

(

√

x2 + (y +a)2 −1
)2

.

The total potential energy is V =
∑4

i=1 Vi . Equilibrium points occur wherever ∂V
∂x =

∂V
∂y = 0, that is, at critical points of V . Since the system is symmetric, the potential

energy V is invariant. Here, W = R
2 with its action of D4. Note that Fix(D4,R2) =

{(0,0)}. Since this is an isolated point, all partial derivatives of V vanish at (0,0) by

the Principle of Symmetric Criticality (PSC, Theorem 4.11). Therefore (as we know

already), (0,0) is an equilibrium point.

To find further critical points, we apply further the PSC. Let H = D1 =
〈

r0

〉

=
{I ,r0}. Then Fix(H ,R2) = {y = 0}. The restriction of V to Fix(H ,R2) is (letting k = 1),

V (x,0) =
1

2
(|x −a|−1)2 +

1

2
(|x +a|−1)2 +

(
√

x2 +a2 −1
)2

JM, March 18, 2020 © University of Manchester
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a < 1
2 a = 1

2 a > 1
2

FIGURE 4.4: Graphs of the potential V (x,0) for the 4-spring problem,

near the equilibrium point at the origin, for different values of a

The Taylor series near x = 0 is

V (x,0) = 2(a −1)2 +
1

a
(2a −1)x2 +

1

4a3
x4 + . . . .

Note that if a > 1
2

, this has a local minimum at x = 0. However, if a < 1
2

, this has a

local maximum at x = 0. The graphs of V (x,0) with a close to 0.5 and x close to 0

are shown in Figure 4.4.

Notice how the number of critical points on the x-axis depends on the value

of a (the point where the springs are attached—or equivalently it depends on the

strength of the spring).

Note: the two variable Taylor series at the origin for this spring problem is

V (x, y) = 2(a −1)2 + (2− 1
a )(x2 + y2)+

1

4a3
(x4 + y4)−

2

a3
x2 y2 +O(6), (4.4)

and you can see that the quadratic term vanishes if a = 1
2 .

In the spring problem above, the equilibrium at (x, y) = (0,0) has full D4 symme-

try. When a > 1
2 this is the only critical point (assuming the springs all have positive

length). When a < 1
2 , there are two other equilibria on the x-axis (and by rotational

symmetry also on the y-axis), and these ’new’ equilibria have less symmetry. Indeed,

they have symmetry D1 =
〈

r0

〉

. This is an example of the phenomenon of sponta-

neous symmetry breaking : a solution of an equation has symmetry G , but as some

parameter is varied (here a) solutions appear nearby whose symmetry is equal to a

proper subgroup of G .

(Another way to ‘break’ the symmetry of this system would be to move one of the

points where one of the springs is attached, so that the 4 points no longer form a

square, and this perturbed system would no longer have D4 symmetry. This process

is called forced symmetry breaking.)

© University of Manchester JM, March 18, 2020
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λ< 0 λ= 0 λ> 0

FIGURE 4.5: Graph of λx2 +x4 for different values of λ

λ

x

FIGURE 4.6: Bifurcation diagram showing the critical points for the

family fλ(x)=λx2 +x4

4.4 Bifurcations: New critical points from old

The function fλ(x) =λx2+x4 has derivative f ′
λ

(x) = ∂ fλ
∂x = 2x(λ+2x2). Its critical points

are thus given by the set of equations

{

x = 0

λ+2x2 = 0.

This type of bifurcation, with a transition from 3 to 1 or 1 to 3 critical points is called

a pitchfork bifurcation. The so-called ‘bifurcation diagram’ is shown in Fig. 4.6.

We begin with problems with one variable and one parameter: Consider critical

points of fλ(x) where λ ∈ R is a parameter and x ∈ R is a variable. How does the set

of critical points changes as λ changes? An example—the pitchfork bifurcation—is

discussed above.

For our purposes, we may assume f ′
λ

(0) = 0 for any λ ∈ R i.e, x = 0 is always a

critical point. This implies the Taylor series of fλ about 0 is of the form

fλ(x) = fλ(0)+ 1
2 a(λ)x2 + 1

3! b(λ)x3 +·· · , (4.5)

for some smooth functions a(λ), b(λ), . . . etc. Critical points arise whenever the deriva-

JM, March 18, 2020 © University of Manchester



4.12 § 4.5 A 3-dimensional example: the Tetrahedron

tive with respect to x vanishes:

f ′
λ(x) = a(λ)x +

1

2
b(λ)x2 +·· · = 0.

Clearly x = 0 is always a solution to this equation (as we required). If a(λ0) 6= 0, then

it is the only solution in a (perhaps small) neighbourhood of 0 and that remains the

case even as λ is varied near λ0. On the other hand, if a(λ0) = 0 one expects some

change, or bifurcation to occur as λ is varied. To ensure this, let us assume that

a′(λ0) = d
dλ

a(λ0) 6= 0.

Theorem 4.14. Let fλ(x) be a smooth 1-parameter family of functions and as-

sume that f ′
λ

(0) = 0 for each λ (as above), and write f in the form (4.5). Suppose

moreover that a(λ0) = 0 but a′(λ0) 6= 0. Then x = 0 is a critical point for each λ

and there is another curve of critical points of fλ in the x-λ plane, passing through

(x,λ) = (0,λ0).

The proof (which we don’t give) is an application of the Implicit Function Theo-

rem. Note that a(λ) = f ′′
λ

(0), and so a′(λ) = ∂3

∂λ∂x2 fλ(0).

Observation: If the representation V is such that V G = {0}, then 0 is a critical point

of every invariant function (see Problem 4.5). As a general consequence, if fλ is a

1-parameter family of invariant functions and H ≤ G is such that dim(V H ) = 1 (for

instance, V = R
2, G = D4 and H =

〈

r0

〉

then V H is the x-axis), then we can use The-

orem 4.14 together with the PSC to find critical points in V H , i.e., critical points with

symmetry H .

Definition 4.15. Let V be a representation of G , and suppose H is such that dimV H =
1, then H is said to be an axial subgroup. ✯

Thus these 1-variable methods apply to axial subgroups. If G is Dn acting on the

plane, then the axial subgroups are all subgroups generated by a reflection, such as

H = 〈r0〉; the corresponding fixed point space V H being the line of reflection.

Note: Let g ∈ G , which is acting on V = R
n by linear (orthogonal) transformations,

or matrices. The fixed point subspace of g is the set of vectors x satisfying g ·x = x.

This is the same as the set of eigenvectors with eigenvalue 1.

4.5 A 3-dimensional example: the Tetrahedron

A regular tetrahedron is a solid with 4 vertices, 4 faces and 6 edges, and each of the 4

faces is an equilateral triangle. See the figure below.

© University of Manchester JM, March 18, 2020
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It is useful for calculations to use a particular orientation

of the tetrahedron, with the x, y and z axes cutting through

the mid-points of 3 of the edges, shown on the right. The 4

vertices are

V1 = (1,1,1), V2 = (−1,−1,1),

V3 = (1,−1,−1), V4 = (−1,1,−1).

Note that these are the points of the form (±1,±1,±1) with

an even number of −1s.

x

y

z

Indeed, the 8 points of the form (±1,±1,±1) form the vertices of a cube, and this

tetrahedron sits nicely in that cube. Moreover, the other 4 points, those with an odd

number of −1s, make up the vertices of another (‘dual’) tetrahedron inscribed in the

cube. See Figure 4.7. Notice (for later) that a rotation by π/2 about any of the axes

exchanges the two tetrahedra.

The symmetry group Let V = {V1,V2,V3,V4} be the set of 4 vertices listed above.

The full symmetry group of the tetrahedron is traditionally denoted Td (the symbol

T denotes just the rotational symmetries). Since any symmetry of the tetrahedron

necessarily permutes the vertices, Td acts on the set V , giving a homomorphism

ρV :Td −→ S4.

I claim that this is an isomorphism. In the first place it is clearly injective, for the only

symmetry that fixes all 4 vertices is the identity. Why is it surjective? To see this, recall

that S4 is generated by transpositions, so if we show that each transposition is in the

image of ρV then we are done.

The transposition (1 2) (swapping V1 and V2) is obtained by a reflection in the

FIGURE 4.7: Two ‘dual’ tetrahedra inscribed in a cube
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4.14 § 4.5 A 3-dimensional example: the Tetrahedron

plane x + y = 0. As a matrix this is





0 −1 0

−1 0 0

0 0 1



 ∈Td .

The other transpositions can be found as other reflections.

Thus the symmetry group of the tetrahedron Td is isomorphic to S4, and conse-

quently is of order 24 (this can also be proved using the orbit-stabilizer theorem).

Axial subgroups To apply the methods of the previous sections, we are interested

foremost in the axial subgroups, and we see there are just 2 ‘types’ (2 conjugacy classes).

We will use the isomorphism derived above to refer to elements of Td by permutations

of the vertices.

(1). For the first type, choose any one of the vertices, say v , and let (Td )v be its

stabilizer. By the orbit-stabilizer theorem this has or-

der
|Td |
|Td ·v | =

24
4 = 6. Indeed, it can be identified with the

subgroup S3 obtained by leaving v fixed and permuting

the other 3 vertices. As a geometric subgroup of Td it is

isomorphic to the group D3 of symmetries of the equi-

lateral triangle, and in particular of the face opposite to

v .

Since the different vertices are all in the same orbit, it

follows that the stabilizers of two different vertices are

conjugate subgroups of Td (or of S4). (See Proposition

1.6.)

v

(2). The other type of axial subgroup is obtained using as axis the line through the

mid-points of opposite edges (there are 3 such lines, shown as the x- y- and

z-axes in one of the earlier figures). Let V1,V2 be the vertices on one edge and

V3,V4 the vertices on the opposite edge. Rotating by π about this axis acts as

(12)(34), the permutation which permutes both the vertices V1 and V2 and the

vertices V3 and V4. Also, (12) is the reflection in the

plane containing V3, V4 and this axis. Similarly, (34)

is the reflection in the plane containing V1, V2 and the

axis of rotation. This group is the stabilizer of m12

(respectively m34), the mid-points of the edge join-

ing V1 and V2 (V3 and V4 respectively). The stabilizer

(Td )m12
=

〈

(12), (34)
〉

≃ Z2 ×Z2 (Klein’s 4-group). There

are 3 conjugate copies of Z2×Z2 in Td , the others being
〈

(13), (24)
〉

(which fixes m13 and m24) and
〈

(14), (23)
〉

(which fixes m14 and m23).

V1

V2

V3V4

Spring example. Consider 4 identical springs each attached to a vertex of a regular

tetrahedron and all attached to a single particle. The springs have natural length ℓ
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THE SYMMETRY PRINCIPLE 4.15

and strength k = 1. The coordinates of the vertices are (1,1,1), (−1,−1,1), (1,−1,−1)

and (−1,1,−1). We know that the origin is an equilibrium (by the PSC: it is the only

point fixed by the group Td ). If the particle has coordinates (x, y, z), the total potential

energy is given by adding together the contribution from the 4 springs:

V (x, y, z) = 1
2

(

√

(x −1)2 + (y −1)2 + (z −1)2 −ℓ
)2

+1
2

(

√

(x +1)2 + (y +1)2 + (z −1)2 −ℓ
)2

+1
2

(

√

(x +1)2 + (y −1)2 + (z +1)2 −ℓ
)2

+1
2

(

√

(x −1)2 + (y +1)2 + (z +1)2 −ℓ
)2

.

(4.6)

Equilibrium points occur when ∂V
∂x = ∂V

∂y = ∂V
∂z = 0. However, this is too nasty to

solve by brute-force calculation. Instead, we use the symmetry! As a first observation,

the fixed point set V T = {0} (for V = R
3). Therefore, (0,0,0) is a critical point of the

potential V .

Next, we use the axial subgroups. For the vertex v = (1,1,1), let H = (Td )v be its

stabilizer. The fixed point set V H is the line through v and the origin. This line has

equation x = y = z. We substitute in (4.6) to get

V (x, x, x) =
1

2

(p
3|x −1|−ℓ

)2
+

(
√

2(x +1)2 + (x −1)2 −ℓ
)2

+
1

2

(p
3|x +1|−ℓ

)2
(4.7)

Because this line is the fixed point subspace, the PSC tells us that to find critical points

of V that lie on this line we only need to solve d
dx V (x, x, x) = 0, we don’t need to

care about the derivatives in the other directions. The bifurcation diagram for crit-

ical points on the axis x = y = z is shown on the left hand side of Fig. 4.8 (it is com-

puted numerically, which explains why the point where the curve crosses the ℓ-axis

is not well-resolved). The bifurcation where the two curves cross is an example of a

transcritical bifurcation.

For the second axial subgroup consider the subgroup
〈

(12), (34)
〉

. The fixed point

set is the z-axis so {x = y = 0}. Substituting this in (4.6), yields

V (0,0, z) = (|z −1|−ℓ)2 + (|z +1|−ℓ)2 (4.8)

and by the PSC we only need to find where d
dz V (0,0, z) = 0. The bifurcation diagram

(found numerically by computer) is shown on the right in Fig. 4.8. The point where

the two curves cross is a pitchfork bifurcation, because V (0,0, z) =V (0,0,−z) in (4.8).

To study the two bifurcations in more detail consider the Taylor series of V at the

origin (omitting the constants):

V =λ(x2+ y2+z2)+
4
p

3ℓ

9
x y z−

2
p

3ℓ

81
(x4+ y4+z4)+

4
p

3ℓ

27
(x2 y2+ y2z2+z2x2)+O(5)

where λ= 2− 4
p

3ℓ
9 . Note that V has a local minimum at (0,0,0) if λ> 0 i.e ℓ< 3

p
3

2 and

a local maximum if λ< 0 i.e if ℓ> 3
p

3
2 . So, the origin is a stable equilibrium if ℓ< 3

p
3

2

and an unstable equilibrium if the inequality is reversed.
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4.16 § 4.6 Problems

FIGURE 4.8: Bifurcation diagrams for critical points of V (x, x, x) and

V (0,0, z) respectively; in both cases the bifurcation occurs when ℓ =
3
p

3/2 ≈ 2.6

On the diagonal,

V (x, x, x) = 3λx2 +
4
p

3ℓ

9
x3 +

10
p

3ℓ

27
x4 +O(5)

On the axis

V (0,0, z) =λz2 −
2
p

3ℓ

81
z4 +O(6).

Notice how the second is even in z while the first is not even in x (because of the x3

term). That accounts for the symmetry in the diagram on the right that is absent in the

one on the left. There is a geometric/group theoretic explanation for this difference

which we will see in the next chapter (it’s related to the normalizer of the stabilizer

subgroup).

4.6 Problems

4.1 Let Z3 = {0,1,2} with addition modulo 3, and let ω = e2πi/3 (note that ω3 = 1).

Consider the action of Z3 on the complex plane C defined by

n · z =ωn z

(i) Show first this is indeed an action. (ii) Show that the equation z3 = 8 has

symmetry Z3 and that the set of solutions also has this symmetry.
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THE SYMMETRY PRINCIPLE 4.17

4.2 Let the group G act on two sets X and Y , and suppose that φ : X → Y is equiv-

ariant. If in addition we suppose φ is a bijection, show that φ−1 is also equiv-

ariant.

4.3 Let V be a representation of G , and let A : V → V be a linear map (a matrix),

which is equivariant. Recall that if v 6= 0 satisfies Av = λv for some λ ∈ R one

says v is an eigenvector of A with eigenvalue λ.

(i). Show that if v is an eigenvector of A with eigenvalue λ, then so is g ·v for

each g ∈G .

(ii). Let Eλ be the λ-eigenspace of A,

Eλ = {v ∈V | Av =λv}.

Show that Eλ is G-invariant.

(iii). Let Gλ be the generalized eigenspace of A:

Gλ = {v ∈V | (A−λI )nv = 0},

where n = dimV . Show that Gλ is also G-invariant.

4.4 Consider the function f (x, y) = x2 + y2 − x4 − y4. Show this is invariant under

the group D4 and find its set C ( f ) of critical points. Describe how the group

acts on this set (i.e., determine the orbits and the orbit type for each orbit), and

hence state the Burnside type of the action on C ( f ).

4.5 Let V be a representation of G with V G = {0}. Prove directly that if f : V → R is

an invariant function then it has a critical point at 0. [By directly, I mean do not

use the Principle of Symmetric Criticality, but you may use its proof to inspire

you.]

4.6 Find all the critical points of the D3-invariant function f (x, y) = λ(x2 + y2)+
1
3 x3 − x y2. Relate these to the fixed point subspaces for different subgroups of

D3 (refer to Fig. 4.1).

4.7 For the system of 4 springs discussed in lectures (Example 4.12), study the crit-

ical points in the subspace Fix(K ,R2), where K = 〈rπ/4〉.

4.8 Let G act on a set X , and let Ω be the set of all functions f : X → R. Show that

the following formula defines an action of G on Ω:

(g ·φ)(x) =φ(g−1x), for φ ∈Ω, g ∈G , x ∈ X .

In other words, g ·φ=φ◦ g−1.

[Note: The inverse here should be reminiscent of the action by right multiplication of

a group on itself, from Chapter 1 (§1.3) which also involves an inverse.]

4.9 Suppose V ,W are representations of a group G . Let φ j : V → W be two equiv-

ariant maps, and let f j : V → R be two invariant functions ( j = 1,2). Show that

the map ψ : V →W given by

ψ(v) = f1(v)φ1(v)+ f2(v)φ2(v)

is equivariant.
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4.18 Problems

4.10 Find all homomorphisms of the cyclic group Z4 to the cyclic group Z6. [Hint: If

H is a cyclic group generated by a, and φ : H →G a homomorphism, then φ is entirely

determined by knowing φ(a). ]
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