
Chapter 3

Wallpaper patterns

Wallpaper patterns are patterns that repeat infinitely in two independent directions.

They have been used over many centuries by artists creating mosaics, for example in

the Alhambra, the famous Islamic palace in Granada (Spain).

However, mosaics are not the only occurrence of such patterns: they occur in

many physical systems, including stripes on tigers and zebras, spots on leopards, cells

in beehives, and patterns in sand dunes and in chemical reactions.

The aim of this chapter is to discuss and describe the symmetries of these pat-

terns. The fact that the pattern repeats in 2 independent directions means that the

set of translational symmetries of a wallpaper pattern forms what’s called a lattice, so

we begin by studying these.
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The diagram on the left shows a traditional wallpaper pattern, on the right is the

same pattern but with some translation vectors shown (several copies of each are

shown to emphasize that it doesn’t matter where the translation vector is drawn. No-

tice that b = a+ c: the important thing here is that the coefficients are integers: in

fact any translation symmetry of this pattern is an integer combination of a and c;

that is, any translation leaving the pattern unchanged is equal to m1a+m2c for some

m1,m2 ∈ Z. And since c = a−b, the translations can also be written n1a+n2b for

n1,n2 ∈Z.
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3.2 § 3.1 Lattices and their symmetries

3.1 Lattices and their symmetries

Definition 3.1. A lattice in R
n is a subset of the form

L = {m1a1 +m2a2 +·· ·+mn an | mi ∈Z for all i = 1, . . . ,n}

where {a1, . . . ,an } is a basis of Rn . One writes Z{a1, . . . ,an} for this set, and we say it is

the lattice generated by a1, . . . ,an . ✯

It is easy to check that a lattice is a subgroup of Rn (with vector addition as the

binary operation); in particular putting all mi = 0 shows 0 ∈ L (and 0 is the identity

element of the group R
n).

In dimension 1 (n = 1), a lattice is just Z{a} = {m a | m ∈ Z} for some a 6= 0 and

looks like this: b b b b b b b b b (one of these points is 0, then ±a, ±2a etc).

From now on we just consider lattices in the plane. One 2-dimensional example

is shown in Fig. 3.1.
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FIGURE 3.1: The lattice in the plane generated by vectors a and b

Question: What symmetries can a lattice have? The first easy observation is that the

translations of a lattice L are precisely the elements of L themselves. Also a rotation by

π about the origin is always a symmetry of any planar lattice (as is easily checked). On

the other hand, which other rotations, reflections and glide reflections are symmetries

of L varies from one lattice to another. There is one important restriction on such

transformations, but first a useful lemma. If L is a lattice, we denote its symmetry

group by WL—it is a subgroup of E (2) (‘W’ for wallpaper). That is, for any lattice L,

write

WL = {T ∈E(2) | u ∈ L ⇒ T (u) ∈ L} .

Lemma 3.2. Let L be a lattice and suppose (A | v) ∈WL . Then v ∈ L and (A | 0) ∈WL .

Proof: Recall the Seitz symbol: (A | v) · x = Ax+ v. Firstly, since (A | v) ∈ WL , it

follows that (A | v) ·0 ∈ L. But (A | v) ·0 = v, whence v ∈ L. Secondly, since v ∈ L

implies the translation (I | −v) ∈ WL , it follows that the product (I | −v)(A | v) =
(A | 0) ∈WL . ❒
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WALLPAPER PATTERNS 3.3

Theorem 3.3 (Crystallographic restriction theorem). Let L ⊂R
2 be a lattice and

suppose R 6= I is any rotation preserving L. Then R has order 2,3,4 or 6.

In other words, R must be a rotation through an integer multiple of π
2 or π

3 .

Proof: Choose a to be a shortest non-zero vector in L, and suppose first that R

has order k ≥ 7. Then R (or some power of it) is R2π/k . Then R2π/k a ∈ L as L is

preserved by R . Consequently, u := R2π/k a−a ∈ L and satisfies

|u|2 = |R2π/k a−a|2

= |R2π/k a|2 −2(R2π/k a) ·a+|a|2

= 2|a|2 −2|a|2 cos(2π/k)

= 2|a|2 (1−cos(2π/k)) .

If k > 6, then cos(2π/k)> 1/2 and thus |u|2 < |a|2. It follows that |u| < |a| which

contradicts the minimal length property of a.

If k = 5, we repeat this argument using instead R4π/5 = R2
2π/5. Setting v :=

R4π/5a+a which must also be in L, we find |v| < |a| leading to a similar contradic-

tion. ❒

We are now ready to state the 5 possible types of lattice. In order to distinguish

them it is useful to choose a particular generating pair for the lattice. We say the pair

a,b (in that order) is a short pair of generators if they satisfy the following properties:

• a is such that no other non-zero vector in L is shorter than a, and

• choose b to be the (or a) shortest vector in L which is linearly independent of a;

note that if b satsifes this, then so does −b, and out of these two we select the

one that makes |a−b| ≤ |a+b|.

It follows then that for a short pair of generators,

|a| ≤ |b| ≤ |a−b| ≤ |a+b|

and the different symmetry types correspond to which of these inequalities are equal-

ities (it is easy to see they can’t all four be equal). We use these to define 5 different

types of lattice (afterwards we discuss their symmetries).

Definition 3.4. There are 5 types of lattice, which are distinguished as follows,

Oblique |a| < |b| < |a−b| < |a+b|,
Rectangular |a| < |b| < |a−b| = |a+b|,

Centred rectangular

{

|a| < |b| = |a−b| < |a+b|,
|a| = |b| < |a−b| < |a+b|,

Square |a| = |b| < |a−b| = |a+b|,
Hexagonal |a| = |b| = |a−b| < |a+b|.

with a and b chosen to be a short pair of generators. See Fig. 3.2 for illustrations. ✯
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(a) Oblique
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(b) Rectangular
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(c) Centred rectangular
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(c′) Centred rectangular as a rhombus
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(e) Hexagonal

FIGURE 3.2: The 5 types of planar lattice
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Notice that the centred rectangular lattice has two possibilities: this is explained

in Remark 3.7 below. The hexagonal lattice is sometimes called a triangular lattice,

and centred rectangular lattices are sometimes called rhombic lattices.

Theorem 3.5. The symmetry group for two lattices of the same type are isomor-

phic, while those of different types are not.

Continuing with the convention for choosing a and b described above, we now

describe the symmetries of each lattice (this constitutes the proof of the theorem).

For the following definition, consider the homomorphism π :E(2) →O(2) defined

by

π(A | v) = A.

Note that kerπ=R
2, the subgroup of translations.

Definition 3.6. Let G ≤ E(2) be any subgroup. The translation subgroup Trans(G)

of G consists of all the translations contained in G ; that is Trans(G) = ker(π
G

) (equiv-

alently Trans(G) =G ∩R
2); the image π(G) ⊂O(2) is called the point group of G , and

denoted JG . ✯

In symbols, (I | u) ∈ G if and only if tu ∈ Trans(G), and (A | u) ∈ G implies A ∈
JG . The translation group is a subgroup of G , whereas the point group may not be:

it involves ignoring any translational components of a group; for example, a glide

reflection becomes just the corresponding reflection through the origin. As we have

pointed out before, for a lattice the translation subgroup of WL is just L (so one can

write Trans(WL) = L). We therefore discuss the other symmetries below.

⊲ For the oblique lattice (see Figure 3.2), the only symmetries are the half-turns

(rotations by π) about different points. And there are 4 different (inequivalent)

centres of rotation: the points of the lattice ma+nb, the centres of the par-

allelograms formed from a and b, namely (m + 1/2)a+ (n + 1/2)b; the centres

of the horizontal lines (m +1/2)a+nb and finally the centres of the skew lines

ma+ (n +1/2)b. These are all rotations by π (they all differ by translations, that

is, are of the form (Rπ | v) ∈E(2)), and therefore the point group is J = 〈Rπ〉 =C2.

Note that the 4 types of centre of rotation are of distinct type, meaning that each

cannot be transformed into another by a symmetry of the latttice.

⊲ For the rectangular lattice there are the same rotations as for the oblique lat-

tice, and in addition reflections in horizontal and vertical mirrors. Thus J =
{I , Rπ, r0, rπ/2} =D2.

⊲ For the centred rectangular lattice, the point group is also J =D2 (see more be-

low).

⊲ For a square lattice, J =D4.

⊲ For a hexagonal lattice, J =D6.
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3.6 § 3.1 Lattices and their symmetries

Remarks 3.7 (On centred rectangular lattices). (1) Centred rectangular lattices are

often called rhombic lattices. Which you call it depends on your point of view, or

more precisely which generators you choose. For example, in Fig. 3.2(c), the lattice is

generated by {a,b} as shown, but also by {b,c} where c = b−a. The vectors a and 2b−a

span a rectangle (shaded in the figure), with the vector b in the centre (hence ‘centred

rectangular’ lattice). On the other hand, b and c define two sides of a rhombus (as

illustrated in Fig. 3.2(c′)). Note that there are some cases where a,b are the shortest

vectors, and some where b,c are, depending on the angle between a and b, but this

does not effect the symmetry of the lattice.

(2) Since the point groups of the rectangular and centred rectangular lattice are

both D2, some explanation of why they are distinguished is needed. Denote by L1 a

rectangular lattice and by L2 a centred rectangular lattice. In spite of having isomor-

phic translation group and the same point group, WL1
and WL2

are not isomorphic,

because the point group is acting differently on the lattice in the two cases, as shown

in the following table (compare with Fig. 3.2):

Rectangular Centred rectangular

r0 rπ/2 r0 rπ/2

a 7→ a a 7→ −a a 7→ a a 7→ −a

b 7→ −b b 7→ b b 7→ a−b b 7→ b−a

❞

Notice that the elements of J in these cases act on the lattice L (permute its ele-

ments): this is a general fact we see for any subgroup of E(2).

Proposition 3.8. Let G be any subgroup of E(2). If A ∈ JG and tu ∈ Trans(G)

then tAu ∈ Trans(G); that is, the point group JG acts on its translation subgroup

Trans(G).

This follows from properties of groups and normal subgroups (see Problem 3.20),

but we give a direct proof. Recall first that a translation tu ∈ Trans(G) if and only if

(I | u)∈G .

Proof: Suppose (A | v) ∈G and let u ∈Trans(G). Then (I | u) ∈G . Now use conju-

gation on G :

(A | v)(I | u)(A | v)−1 = (A | v)(I |u)(A−1 | −A−1v)

= (A | v+ Au)(A−1 | −A−1v)

= (A A−1 | v+ Au+ A(−A−1v))

= (I | v+ Au−v)

= (I | Au).

We conclude that indeed (I | Au) ∈G , and hence tAu ∈Trans(G) as required. ❒
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WALLPAPER PATTERNS 3.7

3.2 Wallpaper groups

Definition 3.9. A wallpaper group W is any subgroup of E(2) with the following two

properties:

(1). its translation subgroup Trans(W) =W ∩R
2 is a lattice.

(2). its point group J = JW is finite.
✯

It follows that the point group of a wallpaper group is eitherCn orDn (for some n ≥
1 — see Theorem 2.9). And it follows from the Crystallographic Restriction Theorem

(Theorem 3.3) that the only possibilities are n = 1,2,3,4 or 6.

Theorem 3.10. There are 17 distinct wallpaper groups.

Here ‘distinct’ means that no two in the list are isomorphic as abstract groups.

Outline proof: LetW be a wallpaper group with lattice L and point group J . Then

L is one of the 5 types of lattices of Definition 3.4. Now, from Proposition 3.8, J

acts on L. Let JL be the point group of WL . It follows that J ≤ JL . Now, go through

each type of lattice and enumerate all possible subgroups of JL . This gives the

classification. (There are one or two subtleties to take into account, such as glide

reflections.)

As an example, suppose L = Z{a,b} is an oblique lattice. Then, JL = C2 =
{I ,Rπ}. If W is such that its associated lattice L is oblique, then J ≤ JL implies that

J = C2 or J = 1 (see Fig. 3.3, where the colouring of (b) has broken the rotational

symmetry).

One then has to eliminate repeated cases. For example, whatever the type of

lattice (oblique, hexagonal etc) if the point group is trivial J = 1 then the wallpaper

group is just the translation group so W ≃ Z
2, and information on the type of

lattice is irrelevant to the symmetry of the pattern. ❒

To make a pattern with a given wallpaper group W of symmetries, first draw its

lattice. Then decorate one tile (parallelogram, rectangle, square, or hexagon) so that

the decoration has the symmetries required and no more. This must then be repeated

in each tile. In Figure 3.3(a) the pattern in the basic parallelogram must have 180◦

symmetry while in (b) (where J = 1) it must not. Examples are shown below, but of

course many other patterns work too.

(a) (b)
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3.8 § 3.2 Wallpaper groups

(a) J = JL =C2

(p2—with rotational symmetry)

(b) J = 1

(p1—with no rotational symmetry)

FIGURE 3.3: The two wallpaper patterns with an oblique lattice

Notations There are two standard notations for the 17 wallpaper groups, the (clas-

sical) crystallographic notation and the (newer) orbifold notation. The symbol in the

orbifold notation is called the signature of the pattern.

To understand these notations, I recommend reading the wikipedia page on Wall-

paper Groups. (The orbifold notation is sometimes called the Conway, or Thurston-

Conway, notation, after William Thurston and John Conway.)

Briefly, in the orbifold notation, the integers refer to centres of rotation; thus in

442, each square contains two inequivalent centres of 4-fold rotation and one of 2-

fold rotation. The ∗ refers to there being a reflection , and the × to a glide reflection.

The difference between, say, ∗3 and 3∗ is that 3∗ means there is a centre of 3-fold

rotation and a line of reflection but the centre of rotation does not lie on the line of

reflection, while in ∗3 the centre of rotation does lie on the line of reflection. The

example below illustrates this.
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3.9

TABLE 3.1: The 17 different wallpaper groups

Lattice type: oblique rectangular cent. rect.

Crystallographic p1 p2 pm pg pmm pmg pgg cm cmm

Orbifold signature o 2222 ∗∗ ×× ∗2222 22∗ 22× ∗× 2∗22

Point group 1 C2 D1 D1 D2 D2 D2 D1 D2

Lattice type: square hexagonal

Crystallographic p4 p4m p4g p3 p3m1 p31m p6 p6m

Orbifold signature 442 ∗442 4∗2 333 ∗333 3∗3 632 ∗632

Point group C4 D4 D4 C3 D3 D3 C6 D6

TABLE 3.2: Generators for each of the 17 wallpaper groups.

o {ta, tb} 442 {ta, Rπ/2}

2222 {ta, tb, Rπ} ∗442 {ta; Rπ/2, r0}

∗∗ {ta, tb; r0} 4∗2 {(Rπ/2 | a), r0}

×× {ta, tb, (r0 | 1
2 a)} 333 {ta, R2π/3}

∗2222 {ta, tb, Rπ, r0} ∗333 {ta, R2π/3, rπ/2}

22∗ {ta, tb, Rπ, (r0 |b)} 3∗3 {ta, R2π/3, r0}

22× {ta, tb, Rπ, (r0 |u), (rπ/2 |u)} 632 {ta, Rπ/3}

∗× {ta, tu, r0} ∗632 {ta, Rπ/3, r0}

2∗22 {ta, tu, Rπ, r0}

Here we write translations and elements of O(2) when possible, otherwise we

use the Seitz notation. When writing r0 etc, we take the x-axis to be parallel

to a. For the (centred) rectangular lattices, a and b are orthogonal of different

lengths. We write u = 1
2 (a+b). We do not claim that these are a minimal set

of generators (and often they are not). For 4∗2 (p4g), see Example 3.11 and

Problem 3.16, and for 22× (pgg) see Problem 3.18.



3.10 § 3.2 Wallpaper groups

Example 3.11 (p4g = 4∗2).

Here we consider in detail the pattern of lozenge

shapes shown on the right which we will see has

wallpaper group p4g or orbifold symbol 4∗2. In

this orbifold notation, the number 4 says that a

pattern has 4-fold rotational symmetry. The ∗
tells us that a pattern has lines of reflection, and

its appearance after the 4 means that the centre of

4-fold rotation does not lie on a line of reflection.

Finally, the 2 means there are centres of 2-fold ro-

tation, and these do lie on the lines of reflection.

Let us look in detail at the symmetries of the pattern.

b

W is p4g, with J =D4

In the figure on the left, the vertical and horizontal

dashed lines are clearly lines of reflection. Let us

say 1 unit is the side of the squares formed by the

reflection lines.

The lattice of translations is generated by the two

vectors shown in the figure, which are equal to

(1,1) and (1,−1) (they can of course be placed

anywhere in the diagram).

The centres of 4-fold rotation do not lie on the

lines of reflection: they lie mid-way between, at

the centres of the squares, such as at the red dot,

and hence in the orbifold notation, the ∗ is after the 4, not before. There are also

centres of 2-fold symmetry (half-turns) at the centre of each lozenge, where the

lines of reflection intersect. This explains the orbifold symbol.

However there are other symmetries which follow from the ones we have de-

scribed. Note that the point group J contains the horizontal and vertical reflections

r0 and rπ/2, and the rotation Rπ/2 and its powers. The group generated by these is

D4, and so there must also be ‘diagonal’ reflections r±π/4 in the point group, and

these could arise either from reflections or from glide reflections. However, from

the figure one can see there are no pure reflections of this form, but there are glide

reflections (whence the g in p4g). In particular, if we take any diagonal line through

the centre of a lozenge, the reflection makes every vertical lozenge horizontal and

vice versa, so composing this with a horizontal or vertical translation by 1 unit re-

stores the orientation of the lozenges and hence is a symmetry.

There are other glide reflections in the symmetry group. They are given by re-

flecting in any line mid-way between two lines of reflection followed by a transla-

tion by 1 unit parallel to the line. The Seitz symbol is, for example, (r0 | (1,1)T ),

where the origin is chosen at the centre of a lozenge.
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WALLPAPER PATTERNS 3.11

3.3 Problems

3.1 Sketch the points (x, y) of the lattice

L =
{

(x, y) ∈R
2 | x ∈Z, y ∈Z, x + y ∈ 2Z

}

,

inside the range −3 ≤ x ≤ 3 and −3 ≤ y ≤ 3. Show that L is generated by (1,1)

and (2,0).

3.2 Consider the lattice L = Z
2. Show that L can be generated by the vectors a =

(7,3) and b = (9,4).

3.3 Extending the previous problem, show that L =Z
2 is generated by integer vec-

tors (a,b) and (c ,d ) whenever ad−bc =±1. [Hint: Consider the matrix A =
(

a c

b d

)

and show the inverse matrix has integer entries iff det A =±1. ]

3.4 Suppose a and b are non-zero vectors. Show that they are orthogonal if and

only if |a+b| = |a−b|.

3.5 Let L =
{

(x, y)∈R
2 | y ∈Z,

p
2(x − y)∈Z

}

. First show L is a subgroup of R2 (un-

der vector addition). Second show that

L =
{(

a + 1p
2

b

a

)

∈R
2 | a,b ∈Z

}

,

and hence find two generators of L and deduce that it is a lattice.

3.6 Consider the two lattices in R
2 defined by,

L1 = {(2m +n, 1
2 n) | m,n ∈Z} and L2 = {(2m +n, n) | m,n ∈Z}

shown in the figures below. In each case, determine vectors a,b according to

the conventions, and find the point group. Describe how the point group acts

on the lattice. Which of the 5 types of lattice is each of these?
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3.12 Problems

3.7 Let S be the subset of R2 consisting of points (3n +1,4m −2) (with m,n ∈ Z).

Find the set (group) of translations of R2 preserving the set S; that is, find

L =
{

v ∈R
2 | x+v ∈ S ∀x ∈ S

}

.

[Hint: Let tv(x) = y. Then y = x+v ∈ S, or v = y−x (with x,y ∈ S).]

3.8 [Adapted from past exam] Consider the following subset of the plane:

S =
{

(x, y)∈R
2 | x ∈Z, y ∈ 2Z, x + 1

2
y ∈ 2Z

}

.

We wish to show first this is a lattice.

(i). Define the notion of a lattice in the plane.

(ii). Show that the two vectors u1 = (2,0) and u2 = (0,4) both belong to S, and

sketch a diagram showing all the points of S that lie in the rectangle 0 ≤
x ≤ 6 and 0 ≤ y ≤ 8. Deduce that S 6=Z{u1,u2}.

(iii). Find two vectors a and b such that S = Z{a,b}, proving carefully that this

is the case, and hence deduce that S is a lattice.

(iv). Show that the point group of the lattice S has order 4 by finding appro-

priate elements of its symmetry group WS < E(2), expressed in the form

(A | v).

(v). Define a glide reflection. Find a glide reflection (A | v) ∈WS whose line of

reflection is not the line of reflection of a reflection symmetry of S.

3.9 Let u > 0 and consider the 1-dimensional lattice Z{u}. Show that the infinite

dihedral group Dih(∞) (see appendix) acts on this lattice, via

a ·x =−x, and b ·x = u −x.

(You need to show that these two transformations do indeed preserve L and

that they satisfy the relations defining Dih(∞)).)

3.10 Consider the planar lattice L =Z

{(

3

0

)

,

(

1

2

)}

. Show this is an oblique lattice, and

by choosing two appropriate elements, show that it contains a subset which is

a rectangular lattice.

3.11 Which of the 5 types of lattice is L =Z

{(

2

0

)

,

(

1

2

)}

?

3.12 Let a,b be two perpendicular vectors of different lengths in R
2, say |b| > |a| > 0,

and let L =Z{a,b} be the resulting rectangular lattice. Let T ∈ E(2) be any of the

reflections that preserve L. Show that there is v ∈ L such that either T = (r0 | v)

or T = (rπ/2 | v). Deduce that the group WL of all symmetries of this lattice is

generated by {ta, tb, Rπ, r0} (why is rπ/2 not needed?).

3.13 Let L = Z{a,b} be any lattice in the plane. There are many possible centres of

symmetry: points c for which a rotation by π about c (denoted h(c) in Problem

2.13) is a symmetry of the lattice.
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WALLPAPER PATTERNS 3.13

FIGURE 3.4: See Problem 3.15. The left-hand figure shows the con-

tours of the function f , the right-hand one the contours of g

(i). Show that c1 = 1
2 a and c2 = 1

2 (a+b) are two such points.

(ii). Show that h(c) preserves the lattice if and only if c ∈ 1
2 L, where 1

2 L is the

lattice
1
2 L = {u ∈R

2 | 2u ∈ L}.

3.14 For each of the following wallpaper patterns, draw generators of the translation

lattice and find the point group. Finally determine which of the 17 wallpaper

groups it is.

3.15 Consider the functions of two variables,

f (x, y) = sin(x)+sin(y) and g (x, y) = sin(x)−2sin
(

1
2

x
)

cos
(p

3
2

y
)

.

The contours of f and g are shown in Figure 3.4: the lighter, or green, regions

are where the function takes positive values and the darker (violet) ones are

where the function is negative. Let W f and Wg be their symmetry groups

(wallpaper groups).

(a) In each case, find the translation subgroup of W . Which of the 5 types of

lattice is this translation subgroup?

JM, March 13, 2020 © University of Manchester



3.14 Problems

(b) Find the point groups J f and Jg (first just by looking at the diagrams, and

then check that these transformations do indeed preserve the function in ques-

tion).

(c) How is this changed if we allow transformations that change f to − f and

g to −g ? More formally, find the stabilizer of each function under the action

of G = E(2)×Z2, where Z2 = {1,−1} and (T, s) · f = s f ◦T −1, for T ∈ E(2) and

s ∈ {±1}.

3.16 Refer to Example 3.11, and choose the origin to be at the centre of one of the

lozenges. Here we discuss how the group of symmetries is generated. Show

that each of the following Euclidean transformations are in the symmetry group:

(Rπ/2 | e1), (r0 | 0)

where e1 = (1,0)T .

(a) Show that the product (composite) g = (Rπ/2 | e1)(r0 | 0) is a glide reflection,

and find the line of reflection.

(b) Show that g 2 is one of the vectors that generate the lattice of translations.

(c) Show the other generator of that lattice is the square of the ‘reverse’ product

k = (r0 | 0)(Rπ/2 | e1).

(d) Conclude that the wallpaper group for this pattern is generated by (Rπ/2 | e1)

and (r0 | 0).

3.17 If we identify R
2 with the complex numbers C, then there are two famous lat-

tices defined using the complex numbers:

• Gaussian integers G = {a +bi | a,b,∈Z} =Z{1, i}.

• Eisenstein integers: E = {a +bω | a,b,∈ Z} = Z{1,ω}, where ω = e2πi/3 =
1
2 (−1+

p
3 i).

Determine which of the 5 types each of these lattices is.

[The interesting thing about these lattices is that they are not only groups, but

rings as well, as you can check. For the Eisenstein case, one uses the fact that

ω2 +ω+1 = 0.]

3.18 Here we look at the wallpaper group pgg, or 22×, see Fig. 3.5. In the figure, there

are two types of ‘widget’: one whose diagonal edge has positive slope and one

with negative slope. Call these positive and negative widgets, respectively.

(i). Show on the diagram generators of the lattice of translations, which is a

rectangular lattice. Why is it not a centred rectangular lattice?

(ii). Find all centres of rotation (by π).

(iii). There are no reflection symmetries of this pattern, but there are both hor-

izontal and vertical glide reflections. Let a,b be a shortest pair of vectors

for the translation lattice, and let u = 1
2 (a+b). Both by drawing diagrams
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WALLPAPER PATTERNS 3.15

FIGURE 3.5: A pattern with symmetry group 22× or pgg, see Prob-

lem 3.18

and by calculation, show that, after suitably choosing an origin, the glide

reflections

T1 = (r0 | u), and T2 = (rπ/2 |u)

belong to the symmetry group of this pattern.

By considering the squares of these glide reflections and their products,

show that the wallpaper group 22× (or pgg) is generated by T1 and T2 (cf.

Table 3.2).

3.19 Find all homomorphisms

(a) from Z2 to Z2 ×Z2, and

(b) from Z4 to Z6.

[Hint: If H is a cyclic group generated by a, and φ : H →G a homomorphism, then φ

is entirely determined by knowing φ(a), because φ(a2) =φ(a)2 etc.]

3.20 † (a) Prove the following lemma:

Lemma 3.12. Let G be a group and H ✁G a normal subgroup. Then the action

of G on itself by conjugation restricts to an action of G on H. Moreover, if H is

abelian, this defines an action of the quotient group G/H on H.

(b) Let G = Dn and H = Cn (which is a normal subgroup). Determine the re-

sulting action of G/H on H .

(c) Deduce Proposition 3.8 from this lemma.
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