
Chapter 2

Euclidean transformations

We begin with general definitions in n dimensions, but our main interest is of course

in 2 and 3 dimensions.

Definition 2.1. A Euclidean transformation, or isometry, of Rn is any map f : Rn →
R

n which preserves distance:

| f (x)− f (y)| = |x−y|.
✯

In the paragraphs below, we show that any Euclidean transformation has a simple

description, but first we give two definitions.

Definition 2.2. (1) An n×n matrix is orthogonal if AT A = I . The set of all orthogonal

n ×n matrices is denoted O(n). The set of special orthogonal matrices is

SO(n)= {A ∈O(n) | det A = 1}.

These are also called rotation matrices. An orthogonal transformation of Rn is a map

x → Ax, where A ∈O(n).

(2) A translation on R
n is a map determined by a single vector. For u ∈ R

n , the

corresponding translation is the map (translation by u)

Tu : Rn →R
n , Tu(x) = x+u.

✯

Notice that since AT A = I , it follows that det(A AT )= 1, and since det(AT )= det(A)

we conclude that det(A)2 = 1 or det(A) =±1. In particular, every orthogonal matrix is

invertible. In fact (see Problem 2.2) the set of orthogonal matrices forms a group.

The relation between these two definitions is given by the following two results,

of which we only prove the first.

2.1



2.2

Proposition 2.3. Orthogonal transformations and translations are Euclidean

transformations, and consequently so are compositions of the two.

Proof: We prove this all in one go. Let A ∈ O(n) and u ∈ R
n , and write f (x) =

Ax+u (if u = 0 this is orthogonal, and if A = I this is a translation; in general it is a

composition of the two). Then

f (x)− f (y) = (Ax+u)− (Ay+u)

= A(x−y).

To show f is an isometry we therefore need only show that A(x−y) has the same

magnitude as x−y. Let z = x−y; we want to show |Az| = |z| for all z ∈ R
n . We use

the easy fact that u ·v = uT v (both sides are equal to
∑n

i=1 ui vi ). Then

|Az|2 = (Az)T (Az)

= zT AT Az

= zT z = |z|2.

Here we used that AT A = I . It follows that |Az| = |z|, as required. ❒

More difficult to prove is the converse of the proposition, which is a famous theo-

rem from Geometry. A proof can be found in Appendix B.

Theorem 2.4. Any Euclidean transformation of R
n is equal to the composition

of an orthogonal transformation and a translation.

What the theorem says is that given any Euclidean transformation f : Rn → R
n ,

there is an orthogonal matrix A ∈O(n) and a vector u ∈R
n such that

f (x) = Ax+u. (2.1)

Note that the proof above of the proposition shows a useful property of orthogonal

transformations and hence of Euclidean transformations: not only do they preserve

the magnitude of a vector, they preserve angles between vectors. This follows from

the following,

(Ax) · (Ay) = xT AT A y = xT y = x ·y.

Seitz symbol The fact that every Euclidean transformation on R
n can be written as

x 7→ Ax+u allows a neat notation for Euclidean transformations. The Seitz symbol for

the transformation x 7→ Ax+u is simply (A |u). Thus, for x ∈R
n ,

(A | u) ·x = Ax+u. (2.2)

For example, the identity transformation x 7→ x has Seitz symbol (I | 0). Notice that, in

the Seitz symbol (A | u), A is applied first and then the translation by u.
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EUCLIDEAN TRANSFORMATIONS 2.3

It is easy to see from their definition that every Euclidean transformation is injec-

tive. One important consequence of the theorem above is that they are also surjective.

This is seen as follows (using the Seitz symbol). Let (A |u) be a Euclidean transforma-

tion, and let y ∈R
n . We want to show there is an x ∈R

n for which (A | u) ·x = y, that is,

such that Ax+u = y.

Multiplying both sides by A−1 (= AT ), we get A−1y = x+ A−1u. Rearranging this

gives x = A−1y− A−1u, which shows (A | u) is surjective. Notice that the inverse of

(A |u) is y 7→ A−1y− A−1u, or in Seitz symbols,

(A |u)−1 = (A−1 | −A−1u). (2.3)

This gives an expression for the inverse of any Euclidean transformation.

Proposition 2.5. The set of Euclidean transformations forms a group under com-

position, denoted E(n).

Proof: (1) Clearly the identity transformation is an isometry.

(2) We showed above that the inverse of an isometry is also an isometry (since all

Seitz symbols represent isometries).

(3) Now we want to show that the composite of two isometries is another isometry.

But this is clear: if f , g are two isometries, then

| f (x)− f (y)| = |x−y|, and |g (u)− g (v)| = |u−v|,

then putting u = f (x) and v = g (y) shows that

|g ( f (x))− g ( f (y))| = | f (x)− f (y)| = |x−y|,

showing that g ◦ f is also an isometry. ❒

It is useful to derive the formula for the product (composite) of two isometries

using the Seitz symbols. Consider (A | u) and (B | v) in E(n) and calculate their com-

posite: let x ∈R
n , then

(A | u)(B | v) ·x = (A | u) · ((B | v) ·x)

= (A | u) · (B x+v)

= A(B x+v)+u

= AB x+ (Av+u). (2.4)

This then is the Euclidean transformation consisting of multiplying by the matrix AB

(which is necessarily orthogonal since A and B are) and then translating by u+ Av,

and thus

(A | u)(B | v) = (AB | u+ Av). (2.5)

Before proceeding with studying Euclidean transformations in the plane, we point

out one property of the special orthogonal group.
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2.4 § 2.1 Rotations and reflections in the plane
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FIGURE 2.1: Rotations and reflections in the plane

Proposition 2.6. SO(n) is a normal subgroup of O(n).

Proof: We use the determinant

det :O(n) −→ Z2 := {±1}

A 7−→ det(A).

From linear algebra we know this is a homomorphism: det(AB ) = det(A)det(B ).

Here Z2 = {1,−1} with multiplication as binary operation.1 The kernel of this ho-

momorphism is,

ker(det) = {A ∈O(n) | det(A) = 1} = SO(n).

It follows that SO(n) is a normal subgroup of O(n), because the kernel of any ho-

momorphism is a normal subgroup (see the appendix). ❒

Remark 2.7. While as a set,E(n) =O(n)×R
n (since elements are ordered pairs (A,v)),

as a group E(n) is not the Cartesian product. In the Cartesian product, the group

operation is (A,u)(B ,v) = (AB ,u+v) which is different from (2.5). ❞

2.1 Rotations and reflections in the plane

Orthogonal transformations in the plane are particularly easy to understand: they are

either rotations about the origin or reflections in a line through the origin. The rota-

tions form the normal subgroup SO(2) of O(2). First we will discuss in some details

what these rotations and reflections are and how they combine, and then show at the

end of this section that these are the only possibilities for an orthogonal transforma-

tion.

1There is just one group of order 2 (up to isomorphism). It is usually denoted Z2, whether it is writ-

ten additively (Z2 = {0, 1} with addition mod 2) or multiplicatively (Z2 = {1, −1} with multiplication), or

abstractly (Z2 = {e, a} with a2 = e). See the Appendix for details.
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EUCLIDEAN TRANSFORMATIONS 2.5

Rotations We denote by Rθ the rotation about the origin through an angle θ (an-

ticlockwise). In order to find the matrix associated to Rθ, pick the standard basis

{e1 = (1,0)T ,e2 = (0,1)T } of R2. Applying Rθ to e1 will give you the first column of A,

and applying A to e2 will give you the second column. Applying elementary geome-

try/trigonometry, the vectors are Rθe1 = (cosθ, sinθ)T and Rθe2 = (−sinθ,cosθ)T . We

deduce that

Rθ =
(

cosθ −sinθ

sinθ cosθ

)

. (2.6)

It can be checked that RT
θ

Rθ = Id. In addition, det(Rθ) = cos2θ+ sin2θ = 1; that is,

Rθ ∈ SO(2).

Reflections Let rα be the reflection in the line subtending an angleαwith the x-axis

(anticlockwise). As before, compute rαe1 = (cos 2α, sin 2α) and rαe2 = (sin 2α,−cos 2α).

Thus,

rα =
(

cos 2α sin2α

sin 2α −cos 2α

)

. (2.7)

Note that det(rα) = −cos2 2α− sin2 2α = −1. Since, in addition, r T
α rα = I , it follows

that rα ∈O(2) \SO(2).

It is useful to record the geometric results of applying two of these operations in

succession:
{

RθRφ = Rθ+φ, Rθrα = rα+θ/2,

rαRθ = rα−θ/2, rβrα = R2(β−α).
(2.8)

These can be readily checked by matrix multiplication and some trigonometric iden-

tities. (You can also show this by drawing some diagrams in the plane, and working in

polar coordinates.)

Proposition 2.8. Every element of O(2) is either a rotation or a reflection, as

described above.

Proof: Lat A ∈ O(2). Since orthogonal transformations preserve the length of

vectors, the unit vector e1 = (1,0) is sent to a unit vector, so is of the form (cosθ, sinθ)

for some θ. This will be the first column of the matrix A. Now consider the second

column Ae2. Since A is orthogonal, we have e2 ·e1 = 0 =⇒ Ae2 · Ae1 = 0. Thus Ae2

is a unit vector orthogonal to (cosθ, sinθ). There are two such possible vectors

subtending an angle of θ+π/2 and θ−π/2 with the positive x-axis. In the two

cases the matrices of A are

A =
(

cosθ −sinθ

sinθ cosθ

)

, and A =
(

cosθ sinθ

sinθ −cosθ

)

,

respectively. The first of these is the rotation Rθ and the second is the reflection

rθ/2. ❒
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2.6 § 2.2 Finite subgroups of O(2)

2.2 Finite subgroups of O(2)

First we describe two classes of finite subgroup of O(2), and below (Theorem 2.9) we

show these are the only possibilities.

(1). Cn is a subgroup of SO(2) and is defined to be the set of all rotations about the

origin through multiples of 2π/n. Thus,

Cn :=
{

I , R2π/n , R4π/n , R6π/n . . . , R2(n−1)π/n

}

.

Here I is the 2×2 identity matrix. By setting R := R2π/n , one can also write it as

Cn =
{

I , R , R2, R3, . . . , Rn−1
}

.

It is therefore isomorphic to the cyclic group of order n. This is the symmetry

group of shapes like those in Fig. 2.2.

C3 C4

FIGURE 2.2: Two figures with cyclic symmetry

(2). Dn , called the dihedral group of order 2n, is the symmetry group of the regular

n-gon, at least for n ≥ 3. Contrary toCn , the dihedral groupDn is not a subgroup

of SO(2). In fact, it contains Cn and, in addition, n reflections. For example, the

dihedral group order 6 is given by

D3 = {I ,R2π/3, R4π/3,r0, rπ/3,r2π/3},

as we saw in Chapter 1. In general,

Dn =Cn ∪ r0Cn =
{

I , R , R2, R3, . . . , Rn−1, r0, rπ/n , r2π/n , . . . , r(n−1)π/n

}

where R = R2π/n . Notice that r jπ/n = r0R−2π j /n ∈ r0Cn . Notice also that Cn and

r0Cn are two (left) cosets of Dn .

There are two special cases: D1 = {I ,r0}, which is just a single reflectional sym-

metry, andD2 = {I , Rπ, r0, rπ/2} which is the symmetry of a rectangle (see Fig. 2.3

below)

The dihedral group Dn is isomorphic to the abstract dihedral group Dih(2n)

(see the Appendix).
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EUCLIDEAN TRANSFORMATIONS 2.7

D1 symmetry D2 symmetry

FIGURE 2.3: Figures with D1 and D2 symmetry

Remarks (1) Note thatD1 = {I ,r0} andC2 = {I ,Rπ} are isomorphic as abstract groups,

since all groups of order 2 are isomorphic. Although D1 and C2 are isomorphic, they

are not conjugate subgroups of O(2).

(2) Consider the restriction of the homomorphism det : O(2) → Z2 to Dn ; that is,

det
Dn

: Dn → Z2. The kernel consists of the A ∈Dn for which det(A) = 1. Therefore,

ker(det) =Cn . In particular, Cn is a normal subgroup of Dn (ie, Cn ✁Dn).

Reminder Let G be a group and H ≤G . Then, for any g ∈G ,

g H g−1 = {g hg−1 | h ∈ H }

is a subgroup conjugate to H . For each g ∈G , conjugation by g is an isomorphism of

G with itself (this is the action denoted µ in Chapter 1 (Sec. 1.3)).

What does this conjugacy mean in O(2)? First we conjugate Rθ by Rϕ:

RϕRθR−1
ϕ = Rϕ+θ−ϕ= Rθ.

The conjugation does nothing, which is due to the fact that SO(2) is Abelian. Now

conjugate r0 by Rφ:

Rφr0R−1
φ = r(0+φ/2)+φ/2 = rφ.

This tells us that r0 and rφ are conjugate in O(2), for any φ, and thus in O(2), all reflec-

tions are conjugate.

Taking this further, one finds that different ‘instances’ of the dihedral group are

conjugate, by which one means thatDn =Cn∪r0Cn andD′
n =Cn∪rφCn are conjugate

subgroups of O(2). Indeed, since Cn is Abelian,

RφDnR−1
φ = RφCnR−1

φ ∪Rφr0CnR−1
φ

= Cn ∪Rφr0R−1
φ Cn

= Cn ∪ rφCn

= D
′
n .

In the context of group actions, the main importance of conjugacy is in Proposi-

tion 1.6: points in the same orbit have conjugate stabilizers.

We now classify all finite subgroups of O(2).
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2.8 § 2.2 Finite subgroups of O(2)

D4 symmetry Symmetry conjugate to D4

FIGURE 2.4

Theorem 2.9. Let G be a finite subgroup of O(2). Then, either G = Cn for some

n ≥ 1, or G is conjugate to Dn for some n ≥ 1.

Proof: We consider two cases: G ≤ SO(2) and G 6≤ SO(2).

First suppose G is a subgroup of SO(2) of order n. We want to show that

G = Cn . Since G ≤ SO(2), G = {I,Rθ1
,Rθ2

, . . . ,Rθn−1
} with θ1,θ2, . . . ,θn−1 ∈ (0,2π).

Let θ0 := min{θ1,θ2, . . . ,θn−1}. We claim that each θ j is an integer multiple of θ0.

To see this, suppose to the contrary that, say, θ j is not an integer multiple of θ0.

Then there is an integer m such that θ j ∈ (mθ0, (m +1)θ0). Then |θ j −mθ0| < θ0.

It follows that Rθ j
(Rθ0

)−m = Rθ j−mθ0
which is a rotation through a positive angle

strictly less than θ0 despite being an element of G . This is a contradiction, so prov-

ing the claim.

It follows that every element of G is of the form Rm = Rmθ0
where R = Rθ0

.

Since G has order n, it follows that

G = {I ,R ,R2, . . . ,Rn−1}

whence Rn = I and θ0 = 2π/n. Thus G =Cn .

Now suppose G 6≤ SO(2). Let G0 =G ∩SO(2) (necessarily a subgroup) and let

n = |G0|. Then by part (1) G0 =Cn .

Consider the determinant homomorphism again, but now just on G , so det :

G → Z2. Its kernel is G0. It follows from the first isomorphism theorem that

G/Cn ≃Z2. Consequently, G has just two (left) cosets of G0 =Cn . Let r ∈G \ G0 (so

detr =−1 meaning that r is a reflection). Then

G =Cn ∪ rCn ,

which means that G is conjugate to Dn (by the discussion above). ❒
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EUCLIDEAN TRANSFORMATIONS 2.9

2.3 General Euclidean transformations of the plane

As we have seen, general Euclidean transformations in the plane are obtained by com-

bining orthogonal transformations and translations. In particular, as stated in Defi-

nition 2.2, the translation by v ∈R
2 is the map

Tv :R2 → R
2

x 7→ x+v.

There is of course one of these translations for each v ∈ R
2, and the set of all transla-

tions is therefore R
2; it forms a group whose binary operator is simply vector addition

(because the composition of two translations is another translation: Tu ◦Tv = Tu+v;

see Problem 2.3).

Recall that a Euclidean transformation of the plane can be written using the Seitz

symbol (A | v), see Equation (2.2). We want to understand what sort of transformation

is represented by a given Seitz symbol.

Particular cases of Euclidean transformation:

• Let (I | v) ∈ E(2) where I =
(

1 0

0 1

)

is the identity matrix in R
2. Then,

(I | v) ·x = I x+v= x+v =Tv(x).

So (I | v) = Tv is just the translation by v.

• Let (Rθ | v) ∈E(2) with θ 6= 0. It turns out that this is a rotation, but about some point

other than the origin, called the centre of rotation. Where is that centre of rotation?

Call it c. Now the centre of rotation is the only point not moved by the rotation, so is

the unique point satisfying (Rθ | v) ·c = c. That is, Rθc+v = c. This implies

v = c−Rθc = (I −Rθ)c. (2.9)

Now, the matrix

I −Rθ =
(

1−cosθ sinθ

−sinθ 1−cosθ

)

is invertible since det(I −Rθ) = 2−2cosθ > 0 as θ 6= 0. Therefore, we can rewrite (2.9)

as c= (I −Rθ)−1v. It follows that,

the Seitz symbol (Rθ | v) corresponds to a rotation through an angle θ about the point

c= (I −Rθ)−1v.

• Finally, consider (rα | v) ∈E(2), where rα is a reflection. First a definition:

Definition 2.10. A glide reflection is a transformation of the plane consisting of a

reflection followed by a translation parallel to the line of reflection (see Fig. 2.5). ✯

Given the transformation (rα | v), let ℓ be the line of reflection of rα, and write

v = v⊥+v∥
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2.10 § 2.3 General Euclidean transformations of the plane

b b

b

b

FIGURE 2.5: A glide reflection

where v⊥ is perpendicular to ℓ and v∥ is parallel to (lies in) ℓ. It is easy to check that

(rα | v) = (I | v∥)(rα | v⊥).

Now I claim that (rα | v⊥) is the reflection in the line parallel to ℓ shifted (trans-

lated) by 1
2 v⊥. Let ℓ1 be that line. Then it is parametrized by 1

2 v⊥+ t u, where u is a

unit vector parallel to ℓ. Consider the effect of (rα | v⊥) on points of ℓ1:

(rα | v⊥) · ( 1
2 v⊥+ t u) = rα( 1

2 v⊥+ t u)+v⊥

= (−1
2 v⊥+ t u)+v⊥

= 1
2 v⊥+ t u.

Here we used the fact that since v⊥ is perpendicular to ℓ, the reflection maps it to

its opposite: rαv⊥ = −v⊥, and since u is parallel to ℓ, the reflection rα leaves it un-

changed. Consequently, the points on the line ℓ1 are fixed by (rα | v⊥), and so it must

be the reflection in that line.

Finally, (I | v∥) is a translation parallel to ℓ and hence parallel to ℓ1, showing that

(rα | v) is in general a glide reflection, and it is a simple reflection if the glide part

v∥ = 0.

We have thus proved the following:

Proposition 2.11. The geometric effect of (A | v) depends on A as follows:

(1). (I | v) = Tv, translation by v,

(2). (Rθ | v) with θ 6= 0 is the rotation through θ about c = (I −Rθ)−1v, and

(3). (rα | v) is a glide reflection as described above (with v = v⊥+v∥), and is a pure

reflection if v∥ = 0.

So far we have discussed how a given (A | v) acts on the plane (rotation, glide-

reflection etc). It is also useful to ask the converse question: if we are given a Euclidean

transformation, how do we write it as (A | v)? This is in fact easier:

• Firstly, v is found simply as the image of 0 under the transformation, because

(A | v) ·0 = A0+v = v.

• If the Euclidean transformation is a rotation about some point c through an angle θ,

then A =Rθ, and

• if it is a (glide) reflection in a line ℓ, then A is the reflection in the line through the

origin parallel to ℓ.
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EUCLIDEAN TRANSFORMATIONS 2.11

Example 2.12. Find the Seitz symbol for the rotation through π/4 about the point

(1,1).

Solution: first find where the origin ends up under the rotation.

It is the point a distance
p

2 from (1,1) in the vertical downwards

direction, which is (1,1−
p

2). Thus v = (1,1−
p

2)T , and the Seitz

symbol for the transformation is (Rπ/4 | v). 0

b

45◦

c= (1,1)

b v

2.4 Classification of triangles using symmetry

These ideas can be applied to classification of any type of geometric figure in the

plane, and we illustrate how this works with the simplest case: triangles.

A triangle is determined by its three vertices, which we assume to be 3 distinct

points in the plane. Note that this allows the three points to be collinear, where the

triangle has zero area, giving a rather degenerate triangle! We call the triangles with

non-zero area proper triangles. In Euclidean geometry, two triangles are said to be

congruent if there is a Euclidean transformation taking one to the other, or in other

words, taking the vertices of one to the vertices of the other. You may remember theo-

rems such as, two triangles are congruent if and only if the three sides of one triangle

have the same lengths as the three sides of the other triangle.

We can rephrase congruence in terms of group actions as follows. Let T denote

the set of all triangles in the plane:

T =
{

{A,B ,C } ⊂R
2 | A,B ,C are distinct

}

.

The Euclidean group E(2) acts in a natural way on T by

g · {A,B ,C } = {g (A), g (B ), g (C )}.

The orbit E(2)·{A,B ,C } is then, by definition, the set of all triangles congruent to ABC .

Question: which triangles have non-trivial symmetry? The symmetry of a triangle

corresponds to the set of Euclidean transformations preserving it. That is, it is the

stabilizer of the triangle. Our question therefore becomes, which triangles have non-

trivial stabilizer?

Consider a triangle ABC (or {A,B ,C }), and let g ∈ E(2). There are several ways in

which one can have g ·{A,B ,C } = {A,B ,C }, depending on how g permutes the vertices

(recall that there are 3 types of permutation of 3 objects: the identity, a transposition

and a 3-cycle):

(1). g fixes all three: g (A) = A, g (B )= B and g (C ) =C

(2). g swaps two: for example g (A) = A, g (B )=C and g (C ) = B , or

(3). g acts as a 3-cycle, say g (A) = B , g (B ) =C and g (C ) = A.
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Triangle type Symmetry type

scalene proper 1

isosceles proper D1

equilateral D3

scalene degenerate D1

isosceles degenerate D2 ≃Z2 ×Z2

TABLE 2.1: Symmetry types of triangles

Case (1): if g fixes all three points, then assuming g is not the identity, g must be a

reflection and the three points must lie on the line of reflection (recall that a rotation

only fixes one point, while a glide-reflection fixes none, and we are assuming the three

vertices are distinct). That is, it is a degenerate triangle (as described above).

Case (2): g fixes the point A and swaps B and C . It follows that the lengths of AB

and AC are equal, so the triangle is isosceles (including equilateral as a special case

of isosceles). Since g only fixes one of the vertices, there are two possibilities aside

from the identity, namely a reflection in a line through A, and a rotation about A. If

g is a reflection, then this would be the traditional picture of a line of reflection of an

isosceles triangle (though possibly a degenerate, flat, triangle). On the other hand, if

g is a rotation with centre at A, and exchanges the two points B and C , it must be a

rotation by π and the vertices are collinear, with A at the mid-point of the other two.

Case (3): g cycles the 3 vertices. It follows that the three sides of the triangle are

all equal (since for example, g (AB ) =BC ), and so the triangle is equilateral, and g is a

rotation by ±2π/3 about its centre.

The remaining possibility is that the triangle is a proper scalene triangle (scalene

means having three sides of different lengths). These triangles have trivial stabilizer,

so ‘trivial symmetry’.

See Table 2.1 for a complete summary. Note that an equilateral triangle cannot be

degenerate without having all three points coinciding, which is not allowed, so every

equilateral triangle is a proper triangle. On the other hand, an isosceles triangle can

be degenerate (marked DI on the diagram) by having one vertex at the mid-point of

the other two. Note that the heading ‘symmetry type’ is meant in the same sense as

‘orbit type’ (see Section 1.5), which is that the stabilizers are conjugate: if two triangles

are conjugate (so lie in the same orbit) then their stabilizers are conjugate subgroups

(as proved in Proposition 1.6).

Figure 2.6 shows a diagrammatic representation of the symmetry types. The point

E represents equilateral triangles, the dashed line represents right-angled triangles

(which in general are scalene, so from the symmetry standpoint are not special). An

isosceles triangle is short or tall depending on whether the equal angles are less

than or greater than the third angle, respectively.
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E
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(right-angled)
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FIGURE 2.6: A representation of the classification of triangles

2.5 Problems

2.1 Deduce from Definition 2.1 that any Euclidean transformation of Rn is injec-

tive.

2.2 Show the set O(n) of orthogonal n ×n matrices forms a subgroup of GL(n).

(Recall (see Appendix) that GL(n) is the group of all invertible n ×n matrices

with matrix multiplication as the group operation.)

2.3 Let V be a vector space, which we know is a group under vector addition. For

each v ∈V there is the translation Tv(x) = x+v. Show that this defines an action

T of V on itself, which coincides with the left translation defined in Section 1.3.

2.4 Find the eigenvalues of Rθ and rα. How are the eigenvectors of rα related to the

line of reflection?

2.5 Verify the identities in Eq. (2.8). Let rα be a reflection, and find the angle of

rotation of rαRθr−1
α . Deduce that, for each n, Cn is a normal subgroup of O(2).

2.6 Show that the map p : E(n) →O(n) given by p(A | v) = A is a homomorphism,

and deduce that the set of translations in E(n) is a normal subgroup.

2.7 In contrast to problem 2.6, show that the map p ′ : E(n) → R
n defined by p ′(A |

v) = v is not a homomorphism.

2.8 Describe the transformation of the plane represented by each of the following

Seitz symbols:

(i) (I | v), (ii) (Rπ | v), (iii) (rπ/4 | v), (iv) (r0 | v).

where v = (1, 1)T ∈R
2.

2.9 Write the Seitz symbol for each of the following Euclidean transformations of

the plane:

(i) the rotation through π/2 about the point (1,1);

(ii) the reflection in the line y = x +1;

(iii) the glide reflection consisting of the reflection in (ii) followed by a transla-

tion by (1,1) (which is parallel to the line of reflection).
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2.14 Problems

2.10 For v ∈ R
n , as usual let Tv denote the translation x 7→ x+v. Let A ∈O(n). Show

that conjugation of a translation by A is another translation, and in particular,

ATv A−1 = TAv.

2.11 Use the Seitz symbol to describe the group E(1) of Euclidean transformations

of the line. [First describe its elements, and then the group structure.]

2.12 Given any transformation (A | v) ∈ E(2), define the 3×3 invertible matrix, writ-

ten in block form,

ψ((A | v)) =
(

A v

0 1

)

∈ GL3(R).

(i) Let g = (rπ/4 | u) ∈ E(2), where u = (1,1)T . Write down ψ(g ) and calculate

ψ(g )2 and compare with ψ(g 2).

(ii) Show that the map ψ :E(2) →GL3(R) is a homomorphism.

2.13 (i) A rotation in the plane through an angle π is called a half-turn. By using

the homomorphism E(2) →O(2) taking (A | v) to A, show that the composite of

two half-turns is a translation.

(ii) For c ∈ R
2, denote by h(c) the half-turn with centre c. Let a,b ∈ R

2. Express

the translation h(b)h(a) explicitly in terms of a and b.

2.14 Complete the following table, showing the geometric type (point/line ...) of the

set of points fixed under each type of Euclidean transformation:

Type fixed point set

Identity

Translation

Rotation

Reflection

Glide-reflection

Note that the different geometric types of fixed point set almost distinguishes

between the 5 types of transformation.

2.15 If rL is the reflection in the line L, and g ∈ E(2) is a Euclidean transformation,

show that g rL g−1 is the reflection in the line g (L). [Hint: use Problem 2.14.]

2.16 Consider the subset L ⊂ R
2 shown to the right con-

sisting of all points in the plane both of whose coor-

dinates are integers (that is, L = Z
2). Find the rota-

tions and reflections in O(2) which preserve L (that

is, map points in L to points in L).
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

2.17 (a) Consider a 2 × 2 chessboard with 2 black squares and

2 white as shown. Which reflections and rotations pre-

serve the chessboard (with its colouring: i.e. sending black

squares to black and white to white). You should use the no-

tation introduced on the sheet on symmetries of the square.
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(b) How do we know in advance (i.e., without finding them) that these trans-

formations will form a subgroup of D4? [Hint: Consider the action of D4 on the

set {C ,C ′} where C is the chessboard shown, and C ′ the same board but with

the colours swapped.]

2.18 Continuing the previous question, now consider the action of Z2 = {e,c} (with

c2 = e) on the chessboard where c ∈ Z2 acts by changing the colour of every

square: black to white and white to black. Combine this with the action of D4

by rotations and reflections to form an action of the product G =D4 ×Z2. For

example, (Rπ/2,c) acts by rotating by π/2 and then changing the colours. What

is the symmetry group of the chessboard, as a subgroup of G? (In other words,

which elements of G preserve the chessboard with its colouring?)

2.19 Find all homomorphisms from Z2 to each of Z3 and Z4.

2.20 † Describe all rotations (centre + angle) and lines of reflection in the plane which

preserve the set L defined in Problem 2.16.

2.21 † Find the possible symmetry types of sets of 4 distinct points in the plane.

2.22 † Find the possible symmetry types of quadrilaterals in the plane. (A quadrilat-

eral consists of 4 points in order: that is, in ABC D there is no edge joining A to

C nor B to D. (There should be a different answer than in the previous ques-

tion.))
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