
Chapter 1

Group actions

Groups manifest themselves by acting on sets, so displaying the symmetry of the set

in question. This chapter describes many of the basic properties of group actions,

introducing the language used and some of the most important general theorems.

Before discussing group actions, we begin with a brief reminder about permutations.

1.1 Permutations

Consider the set {1,2, . . . , N } (or any other set of N objects). A permutation of this set

is a bijective map σ : {1, . . . , N } → {1, . . . , N }. If we compose two such maps together,

first applying τ and then σ, we get another permutation denoted σ◦τ, or as is more

traditional in this context, simply στ. It is the permutation x 7→σ(τ(x)). The set of all

permutations of {1, . . . , N } equipped with this composition law form a group denoted

by SN which is called the symmetric group on N objects or also permutation group.

Its order is |SN | = N !. A permutation σ can be written in the two-line notation

σ=

(

1 2 · · · N

σ(1) σ(2) · · · σ(N )

)

The elements of {1, . . . , N } are listed in the first row and for each one, its image under

σ is written below it in the second row. For example, if N = 5, define the two permu-

tations σ and τ by

σ=

(

1 2 3 4 5

5 4 3 2 1

)

, τ=

(

1 2 3 4 5

3 2 4 1 5

)

.

This means for example, σ(2) = 4 and τ(1) = 2.

The composition στ (meaning first apply τ and then σ) is the permutation

στ=

(

1 2 3 4 5

3 4 2 5 1

)

.

A permutation can also be written in the disjoint cycle notation. Starting from any

particular x ∈ {1, . . . , N }, one writes the sequence (x,σ(x),σ(σ(x)), . . . ) of successive
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1.2 § 1.2 Group actions

images under σ. When the image returns to x, a cycle is completed. One continues by

choosing a new element y outside of the previous cycle and repeating the cycle con-

struction. In this notation, our example above reads σ= (1 5)(2 4) (or σ= (1 5)(2 4)(3)

but the (3) is redundant) and τ = (1 3 4). Then, στ = (1 3 2 4 5) (complete cycle) with

inverse (στ)−1 = (5 4 2 3 1).

More generally, if X is any finite set, we denote by

Sym(X ) = the group of permutations of the elements of X .

If |X | = N , then there is an isomorphism (indeed many isomorphisms) betweenSym(X )

and SN . For example the vertices A,B ,C of the triangle in Figure 1.1 are permuted by

the reflections shown, giving permutations of the set {A,B ,C } (see the example be-

low).

Finally, recall that if a permutation can be written as a product of r transpositions

then one says it has sign equal to (−1)r (also called the signature or parity). It follows

from this definition, and the fact that the transpositions generate the group) that the

sign defines a homomorphism sgn : Sn →Z2. Note that the sign of a cycle of length ℓ

is (−1)ℓ−1: for example (1 2 3 4) = (1 4)(1 3)(1 2) so has sign (−1)3 =−1.

1.2 Group actions

Now we turn to actions of groups; group actions is the mathematical language re-

quired for studying symmetry. We begin with an example and then give the general

definition.

Notation Throughout this course, we will use the notation Rθ to mean a rotation of

the plane about the origin through an angle θ in the anticlockwise direction, and rα
to mean the reflection through the line y = x tanα (which subtends an angle α with

the positive x-axis). Note that Rθ+2π =Rθ and rα = rα+π.

Example 1.1 (the Dihedral group D3). In this example, for brevity, we denote

α=
2π
3 and β=−

2π
3 . Consider the so-called dihedral group of order 6,

G =D3 = {e,Rα,Rβ,r0,rα,rβ}

of rotations and reflections in the plane. Multiplication in the group is by composi-

tion, so for example rβrα means rβ ◦ rα (do rα first then rβ), and this is the rotation

Rβ through β. By looking at the effect on the plane one can find the multiplication
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FIGURE 1.1: Symmetries of the equilateral triangle, with α= 2π/3 and

β= 4π/3

table:
D3 e Rα Rβ r0 rα rβ

e e Rα Rβ r0 rα rβ

Rα Rα Rβ e rβ r0 rα

Rβ Rβ e Rα rα rβ r0

r0 r0 rα rβ e Rα Rβ

rα rα rβ r0 Rβ e Rα

rβ rβ r0 rα Rα Rβ e

α =
2π
3 ,

β = −
2π
3

Each element of G permutes the elements of V := {A,B ,C } (the vertices of the

equilateral triangle—see Fig. 1.1). This gives a map ρ :D3 → Sym(V ) defined by

ρ(e)=

(

A B C

A B C

)

, ρ(Rβ) =

(

A B C

C A B

)

, ρ(Rα)=

(

A B C

B C A

)

,

ρ(r0) =

(

A B C

A C B

)

, ρ(rα) =

(

A B C

C B A

)

, ρ(rβ)=

(

A B C

B A C

)

.

This is clearly a homomorphism, that is, ρ(g h)= ρ(g )ρ(h), because the multiplica-

tion operation of both groups is composition. For example,

ρ(rβ)ρ(rα) =

(

A B C

C A B

)

= ρ(Rβ) = ρ(rβrα).

(In fact, in this case, this homomorphism is an isomorphism, but that is not usually

the case.)

Definition 1.2. An action of a group G on a set X is a homomorphism

ρ : G → Sym(X ).
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1.4 § 1.2 Group actions

One sometimes writes G

�

X to mean that G acts on X . ✯

Recall that a map φ between two groups is a homomorphism if, for all g ,h in the

group,

φ(g h) =φ(g )φ(h).

See the appendix (page A.8) for more details.

Example (The dihedral group D3 continued). Let us extend the above example,

with the same group but more points in the plane (Fig. 1.2).

b
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x6

FIGURE 1.2: A set of 9 points with symmetry D3. The 9 points form 2

orbits: an equilateral triangle and a semiregular hexagon. (The dashed

lines are only to guide the eye.)

The dihedral group D3 now acts on the set X := {A,B ,C , x1, x2, x3, x4, x5, x6}. Then,

there is a homomorphism ρ : D3 → Sym(X ) ≃ S9. For instance, the image under ρ of

the reflection r0 is given by the permutation

ρ(r0)=

(

A B C x1 x2 x3 x4 x5 x6

A C B x6 x5 x4 x3 x2 x1

)

,

or in product of cycles notation, ρ(r0) = (B C )(1 6)(2 5)(3 4). Since the groups D3 and

S9 have different orders, ρ cannot be an isomorphism. We write ρ(r0)(x3) (or more

simply ρ(r0)x3) to mean the point x3 is moved to when we apply the reflection r0 to it,

which here is the point x4.

Sometimes one writes simply g ·x in place of ρ(g )x.

Definition 1.3. If G acts on X , the orbit of a point x ∈ X is the subset of X defined by

G ·x := {ρ(g )x | g ∈G}.
✯

In the example in Fig. 1.2, G ·A = {A,B ,C } while G ·x1 = {x1, x2, x3, x4, x5, x6}. There-

fore this action of D3 has two orbits.

Definition 1.4. If G acts on X and x ∈ X , the stabilizer of x is the subset of G

Gx := {g ∈G | ρ(g )x = x}.
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GROUP ACTIONS 1.5

(Stabilizer subgroups are also called isotropy subgroups.) If ρ(g )x = x we say that g

fixes x. ✯

In the example above, G A = {e,r0}, GB = {e,rβ}, and Gx1
= {e} = 1.

Recall (see the appendix) that if G is a group, a non-empty subset H ⊂G is a sub-

group if it is closed under the group operations of G ; that is,

h ∈ H =⇒ h−1
∈ H , and h1,h2 ∈ H =⇒ h1h2 ∈ H .

This is called the subgroup criterion (note that together they imply e ∈ H ). We write

H ≤G as a shorthand to mean H is a subgroup of G .

The first fundamental property of group actions is the following.

Proposition 1.5. Let G act on X . For each x ∈ X , the stabilizer Gx is a subgroup

of G.

Proof: First, by the homomorphism property of an action, the identity element

e ∈G maps to the identity permutation, which fixes every element of X , so e ∈Gx .

Let g ∈Gx . By definition, ρ(g )x = x. Then, since an action is a homomorphism,

ρ(g−1)x = ρ(g−1)(ρ(g )x)

= ρ(g−1g )x

= ρ(e)x = x.

That is, ρ(g−1)x = x and therefore, g−1 ∈Gx . Finally, let g1, g2 ∈Gx . Sinceρ(g1g2)x =

ρ(g1)(ρ(g2)x) = ρ(g1)x = x, we deduce g1g2 ∈ Gx . Therefore, Gx is closed under

the group operations of G which means it’s a subgroup. ❒

Proposition 1.6. Elements of X that lie on the same orbit have conjugate stabi-

lizers; in particular, if y =ρ(k)x, then Gy = kGx k−1.

Proof: Let k ∈G and let y =ρ(k)x. If g ∈Gx , we get

ρ(k g k−1)y = ρ(k g )(ρ(k−1)y)= ρ(k g )x = ρ(k)(ρ(g )x)= ρ(k)x = y.

Therefore, kGxk−1 ⊂ Gy . Conversely, if h ∈ Gy , then ρ(k)x = y = ρ(h)y = ρ(hk)x.

Thus, k−1hk ∈Gx which implies that Gy ⊂ kGxk−1. Therefore, Gy = kGx k−1. ❒

An alternative proof, which some may prefer, is as follows:
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FIGURE 1.3: Symmetries of the square

Proof: Let y = ρ(k)x as in the statement. Then (and here we’re using the short-

hand notation g ·x instead of ρ(g )x),

Gy = {g ∈G | g · y = y}

= {g ∈G | g · (k ·x) = k ·x}

= {g ∈G | (g k) ·x = k ·x}

= {g ∈G | (k−1g k) ·x = x}

= {khk−1
∈G | h ·x = x} (putting h = k−1g k)

= k{h ∈G | h ∈Gx }k−1

= kGxk−1

as required. ❒

Example (the dihedral group D4) See Figure 1.3. One can deduce from this ac-

tion that the elements rπ/4 and r−π/4 are conjugate elements of D4: this is because

the stabilizer G A = {I , rπ/4} and the stabilizer GB = {I , r−π/4}. Since the points A and

B lie in the same orbit (because B = Rπ/2 · A) so the stabilizers are conjugate. More

specifically, GB =Rπ/2G AR−1
π/2.

On the other hand, r0 and rπ/4 are not conjugate (see Problem 1.10).

Two of the subgroups of D4 are

D2 = {I , r0, rπ/2, Rπ}, and D′
2 = {I , rπ/4, r−π/4, Rπ}.

Although both are isomorphic to Z2×Z2, they are not conjugate subgroups of D4: one

way to see this is that r0 is not conjugate to any element of D′
2.

Reminder from group theory. Let H ≤G . Then, for g ∈G , the set

g H := {g h | h ∈ H }

is called a left coset of H in G . Similarly,

H g := {hg | h ∈ H }
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GROUP ACTIONS 1.7

is a right coset of H in G . See the appendix for more details, and particularly the

statement and proof of Lagrange’s theorem (see p. A.6).

Let G act on X and for any pair of elements x, y ∈ X consider the following subset

of G ,

Gx,y := {g ∈G | ρ(g )x = y}.

In words, this set consists of those elements of the group that send x onto y . Of course,

if x and y are not in the same orbit, then Gx,y is empty.

Proposition 1.7. If y = ρ(h)x for some h ∈ G, then Gx,y = hGx = Gy h; that is,

Gx,y is a left coset of the stabilizer Gx and a right coset of the stabilizer Gy .

Proof: We show that Gx,y = hGx and leave the other to the reader. Now,

h Gx = {hg | g ∈Gx }

= {hg | ρ(g )x = x} (definition of Gx )

= {hg | ρ(h)ρ(g )x =ρ(h)x} (acting by ρ(h))

= {k ∈G | ρ(k)x = y} (putting k =hg , and y = h ·x)

= Gx,y ,

as required (we used the homomorphism property: ρ(h)ρ(g )= ρ(hg )). ❒

The following theorem has many applications to counting things.

Theorem 1.8 (Orbit-Stabilizer theorem). Suppose G acts on X and let x ∈ X .

Then, the number of points in the orbit of x is

|G ·x| = |G|/ |Gx |.

Proof: To prove this, we define a map φ from the orbit G ·x to the set of left cosets

of Gx which we show is a bijection. The map in question is defined by

φ : G ·x −→G/Gx

y 7−→Gx,y .

By the proposition above, this is indeed a left coset of Gx .

Now we show φ is a bijection. To see it is surjective we need to show that each

left coset hGx is equal to φ(y) for some y ∈G ·x. But φ(h ·x) =hGx by the proposi-

tion above, so putting y =h ·x shows φ is indeed surjective. For the injectivity of φ,

suppose y1 and y2 are two distinct points in the orbit. Then, by its very definition,

Gx,y1
6=Gx,y2

, so that φ(y1) 6=φ(y2).

It follows that |G ·x| = |G/Gx | = |G|/|Gx | (see Lagrange’s theorem). ❒

For instance, for the action depicted in Figure 1.1, the group is G =D3 which has

order |D3| = 6. The stabilizer subgroup G A = {e,r0} has order |G A | = 2 and thus the

orbit G · A has three elements (namely, A,B and C ).
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1.8 § 1.2 Group actions

Example 1.9 (Order of tetrahedral group T). This theorem can also be used to

determine the order of a group, as this example shows. Con-

sider a regular tetrahedron, and let T denote its group of ro-

tational symmetries: we want to determine the order of T.

Now, the tetrahedron has 4 vertices, call them A,B ,C ,D, and of

course any symmetry of the tetrahedron permutes these ver-

tices. Now select one of the vertices, say A. The orbit of A is

clearly {A,B ,C ,D}, since one can rotate A to any of the other 3

A

B

D

C

vertices; that is, |T · A| = 4. We now need to find the stabilizer of A. Rotations fixing

A must rotate the triangular face BC D opposite A, and there are 3 such possible

rotations (including the identity). That is, the stabilizer TA has order 3. It therefore

follows from the orbit-stabilizer theorem that |T| = |TA| × |T · A| = 3× 4 = 12. See

Problem 1.5 for a similar example.

It is useful to distinguish certain types of action:

Definition 1.10. Let ρ : G → Sym(X ) be an action of G on X . We say the action is,

• transitive if for every x, y ∈ X , there is a g ∈G such that ρ(g )x = y ;

• free if for every x ∈ X , the isotropy group is trivial: Gx = 1;

• effective if for any g ∈G , g 6= e , there exists x ∈ X such that ρ(g )x 6= x.

✯

Examples 1.11. (1). Triangle example (Fig. 1.1) The action ofD3 on V = {A,B ,C }

is not free since, for instance, G A = {e,r0} 6= 1. Moreover, this action is transi-

tive. Indeed, any element of V can be moved to any other using a reflection.

It is also effective because any element other that the identity moves at least

one element).

(2). Triangle example with six additional points (Figure 1.2) Here D3 acts on

{A,B ,C , x1, . . . , x6}. This action is not free since again G A 6= 1. It is not tran-

sitive as there is no g ∈D3 such that g · A = x1 say. Indeed, we already know

that this action has two orbits. It is an effective action as above.

(3). Square example. The action of D4 on {A,B ,C ,D} is not free, but is transitive

and effective. The action—call it ρ—of D4 on the diagonals of the square

{AC ,BD} is also transitive. It is not effective since both diagonals are fixed by

Rπ. So Rπ ∈ ker(ρ) because the resulting permutation of the diagonals is,

ρ(Rπ) =

(

AC BD

AC BD

)

.

In fact, ker(ρ) = {e,Rπ,rπ/4,r−π/4} which is a subgroup of order 4. Finally,

since it is not effective, it is not free.

© University of Manchester JM, January 30, 2020



GROUP ACTIONS 1.9

To end this section on general properties of actions, we define the notion of when

two actions are ‘equivalent’, or ‘isomorphic’. The first notion (that of equivariant

maps) is one we will be using many times.

Definition 1.12. Suppose G acts on two sets X and Y by ρX : G → Sym(X ) and ρY :

G → Sym(Y ).

(1). A map φ : X → Y is equivariant if it satisfies φ(ρX (g )(x)) = ρY (φ(x)) for every

g ∈G and every x ∈ X . More briefly, this condition can be written

φ(g ·x) = g ·φ(x). (1.1)

(2). The actions on X and Y are said to be isomorphic if there is a bijection φ : X →

Y which is also equivariant. ✯

This equivariance property can be illustrated by the

diagram on the right: if you start in the top left X

and proceed to the bottom right Y by either path

you get the same answer. (Such a diagram is called

a commutative diagram.)

X X
ρX (g )

Y Y
ρY (g )

φ φ

Example 1.13. Let V denote the set of vertices of an equilateral triangle (as in

Fig. 1.1) and E the set of its edges. The group D3 acts on both sets, and these two

actions are isomorphic. Indeed, the map φ : V → E given by φ(A) = BC , φ(B ) = AC

and φ(C ) = AB is equivariant and bijective: checking this is left as an exercise (see

Problem 1.14).

1.3 Groups acting on themselves

There are three general ways in which a group acts on itself (that is where X =G).

(1). The group G acts on itself by left translation1. This action is given by the ho-

momorphism

λ : G → Sym(G)

where λ(g ) is the permutation k 7→ g k . Let us show that λ defines an action:

that is that λ(g h) =λ(g )λ(h). To see this, pick an element k ∈G and compute

λ(g h)(k)= (g h)k = g (hk)=λ(g )(hk) =λ(g )λ(h)(k).

Since k was arbitrary, it follows that indeed λ(g h) = λ(g )λ(h). For instance, for

the group D3,

λ(Rα) =

(

e Rα Rβ r0 rα rβ
Rα Rβ e rβ r0 rα

)

.

1sometimes called left multiplication

JM, January 30, 2020 © University of Manchester



1.10 § 1.4 Action on left cosets

Notice that λ(g ) is the permutation of G given by the row of the multiplication

table corresponding to g . This action λ is always free: λ(g )(k) = k ⇔ g k = k ⇔

g = e . It is also transitive since, for any h,k ∈G , we can choose g = kh−1 to get

λ(g )(h) = kh−1h = k . It is also effective since it is free.

(2). A group also acts on itself by right translation. This is given by a homomor-

phism ρ : G → Sym(G), where ρ(g ) is the permutation k 7→ k g−1 Thus ρ(g ) is

the permutation of G given by the column of g−1. We have, for example,

ρ(Rα)=

(

e Rα Rβ r0 rα rβ
Rβ e Rα rβ r0 rα

)

.

Note that the second row is the R−1
α = Rβ column of the multiplication table

on p. 1.3. This map satisfies ρ(g h) = ρ(g )ρ(h), as should be checked (it’s not a

homomorphism in general if we used k 7→ k g instead of k 7→ k g−1). Like the

action on the left, this is free, transitive and effective.

(3). The third action is perhaps the most important: the action by conjugation.

This action µ : G → Sym(G) is defined by µ(g )(k)= g k g−1. This action is neither

free nor transitive; whether it is effective or not depends on the group. For in-

stance, if the group is commutative this action is trivial (as g k g−1 = g g−1k = k)

and therefore in this case kerµ=G . We return to this later.

Exercise: Show ρ and µ are actions. Show moreover that for each g , µ(g ) is an au-

tomorphism of G , that is, µ : G → Aut(G) (see Appendix: an automorphism is an iso-

morphism of G with itself).

1.4 Action on left cosets

Fix a subgroup H ≤G , and consider the collection of left cosets of H in G . Denote this

set by G/H :

G/H := {g H | g ∈G}.

In general, G/H is not a group; it is just a set. From Lagrange’s theorem (or Fig. A.1),

|G/H | = |G|/|H |.

The left action λ : G → Sym(G) defined above induces an action of G on G/H ,

which we denote λH : G → Sym(G/H ); this is defined by

λH (g )(k H )= g k H .

Example (See Figure 1.1). Consider the subgroup of D3 given by H := 〈r0〉 = {e,r0}.

There are 3 left cosets, which are: H = {e,r0}, rαH = {rα,R−2π/3} = R−2π/3H and rβH =

{rβ,R2π/3} = R2π/3H . The quotient space is thus G/H =D3/〈r0〉 = {H ,rαH ,rβH }. The

action λH : G → Sym(G/H ) is given by

λH (R2π/3) =

(

H rαH rβH

rβH H rαH

)
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and

λH (r0)=

(

H rαH rβH

H rβH rαH

)

because, for example, r0rα = R2π/3 so r0rαH =R2π/3H = rβH .

You may notice that this action of D3 is very similar to the action of D3 on the

triangle (Example 1.1). With the following theorem we make that precise and see it is

a general phenomenon.

Recall that the Orbit-Stabilizer theorem (Theorem 1.8) tells us that the number

of elements in G · x is the same as the number of elements in G/Gx . The following

theorem tells us more: that the two actions of G are isomorphic. This is a fundamental

fact: it shows that the action of G on any group orbit is encoded in the action on the

set of left cosets G/H for an appropriate choice of H .

Theorem 1.14. Suppose G acts transitively on X (i.e., X is a single orbit), and let

x ∈ X . Then the action of G on X is isomorphic to the action λH of G on G/H for

H =Gx .

Proof: Recall the map φ : G ·x →G/Gx defined in the proof of the Orbit-Stabilizer

theorem:

φ(y) =Gx,y .

If y = k · x then we saw (Proposition 1.7) φ(y) = kGx . We proved in Theorem 1.8

that φ is a bijection, so there just remains to show it is equivariant: that is φ(g ·y) =

gφ(y) (for all y ∈ X and all g ∈G).

Choose y ∈X, and let k be such that y = k ·x, and let g ∈G . Then,

φ(g · y) = φ(g k ·x)

= (g k)Gx

= g (kGx )

= gφ(y).

Since y ∈ X and g ∈G are arbitrary, the theorem is proved. ❒

Let us add a second equilateral triangle to the action of D3 depicted in Figure 1.2,

for example with vertices opposite to those of the first triangle, and an extra point at

the origin, see Figure 1.4. There are now four orbits in total; namely, the origin, two

equilateral triangles and one semi-regular hexagon:

{O}, {A,B ,C }, {A′,B ′,C ′}, and {x1, x2, . . . , x6}.

The group D3 would act on the two equilateral triangles in a similar way, while the

action is quite different on the hexagon and the origin. The definition of ‘orbit type’

given below makes this precise.
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FIGURE 1.4

1.5 Orbit type

The theorem above suggests we can classify orbits of a given group action by their

stabilizer, since the action on a given orbit is determined by the stabilizer of any point

in the orbit. However, different points in the orbit might have different stabilizers so

the suggestion is not sensible as it stands.

However, all is not lost: recall from Proposition 1.6 that points in the same orbit

have conjugate stabilizers. For example, in the figure,

G A = 〈r0〉 , and GB = 〈r−π/3〉 ,

and r0 and r−π/3 (and rπ/3) are conjugate in D3 (indeed, r−π/3 = R−1
2π/3

r0R2π/3). Thus,

associated to each orbit is the conjugacy class of the stabilizers. This motivates the

following definition.

Definition 1.15. Suppose G acts on X . The orbit type of x, or of its orbit G · x, is

defined to be the conjugacy class of the stabilizer of x. ✯

In the example shown in Fig. 1.4 above, the points A,B ,C , A′,B ′,C ′ all have sta-

bilizer conjugate to D1 = 〈r0〉. On the other hand O has stabilizer D3 which is not

conjugate to D1, and each of the vertices of the semi-regular hexagon has stabilizer 1.

Notation If H < G then we write (H ) for the collection of subgroups of G that are

conjugate to H . The orbit type of the triangle in Fig. 1.4 (in fact both triangles) is thus

written (D1), the orbit type of the origin is (D3) and of the semi-regular hexagon is (1).

Since in this example, there are one orbit of type (D3), two of type (D1) and one of

type (1), we can represent the action of D3 on the set of 13 points as,

(D3)+2(D1)+ (1),

and this information tells us exactly ow the group is acting on the set. This expression

is known as the Burnside type of the action, after the group theorist William Burnside
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GROUP ACTIONS 1.13

who developed many of these ideas around the end of the 19th century. The formal

definition in general is as follows.

Definition 1.16. Consider a finite group G and let H1, . . . , Hk be a collection of sub-

groups such that every subgroup of G is conjugate to exactly one of these Hi . Now

suppose G acts on a finite set S. We can write S as a disjoint union of orbits and each

of these orbits has orbit type equal to one of the (Hi ). Suppose the number of orbits

of type (Hi ) is ni . Then we say the Burnside type of the G action on S is,

B(S)= n1(H1)+n2(H2)+·· ·nk (Hk ).

Here the ni are non-negative integers. ✯

Notice that the total number of orbits in the above expression is

n1 +n2 +·· ·+nk .

One denotes the set of orbits of an action of G on X by X /G , and it is often called the

quotient of X by G : more on this in the next section.

Note also that if S is the disjoint union of two sets S1 and S2, and G acts on each of

these, then the Burnside type of S is the sum of the Burnside types of S1 and S2.

Example 1.17. Consider G =D4 acting on the square with vertices A,B ,C ,D, as in

Figure 1.3. Let V = {A,B ,C ,D} be this set of vertices and E = {AB ,BC ,C D,D A} be its

set of edges. Let S =V ∪E . The sets V and E are both orbits of D4 with 4 elements.

The stabilizer of the point A ∈V is D′
1 = 〈rπ/4〉, while the stabilizer of the edge AB is

D1 = 〈r0〉. Thus the Burnside type of S is

B(S)= 1(D1)+1(D′
1).

(It was pointed out earlier that D1 and D ′
1 are not conjugate subgroups of D4; see

also Problem 1.10.)

1.6 Counting orbits

Suppose G acts on a set X . It is natural to ask how many orbits there are. For example,

in Figure 1.2 there are two orbits and in Figure 1.4 (on p.1.12) there are 4. There is a

formula expressing the number of orbits in terms of the number of points fixed by the

different elements of G . It is often called the Burnside Lemma, although it can also be

attributed2 to Cauchy and to Frobenius.

For each g ∈G , denote by X g the subset of elements of X that are fixed by g ; that

is,

X g
=

{

x ∈ X | ρ(g )x = x
}

.

2Augustin Cauchy lived 1789–1857, so was active 150 years before Burnside; Frobenius on the other

hand was a contemporary of Burnside
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1.14 § 1.6 Counting orbits

Theorem 1.18 (Orbit counting theorem, or Burnside Lemma). Let a finite group

G act on a finite set X . Then the number of orbits is

|X /G| =
1

|G|

∑

g∈G

∣

∣X g
∣

∣ .

Let us test this theorem on the action of D3 on the 13 points shown in Fig. 1.4. We

have the following table of numbers of fixed points

e R2π/3 R4π/3 r0 rπ/3 r−π/3

13 1 1 3 3 3

The order of the group is 6, so the number of orbits is

|X /G| =
1

6
(13+1+1+3+3+3) = 4.

That is, as we already know, this action has 4 orbits. Note that conjugate elements of

the group have the same number of fixed points (see Problem 1.4).

Proof: This is an exercise in counting something in two different ways. The

‘something’ is the set S of3 ‘stabilizing pairs’,

S = {(g , x) ∈G ×X | ρ(g )x = x},

where ρ is the action of G on X . We proceed to find the cardinality of S in two

different ways.

First, for each g ∈G , (g , x) ∈ S iff x ∈ X g , and so

|S| =
∑

g∈G

|X g
|. (1.2)

On the other hand, for each x ∈ X , there are |Gx | elements g such that (g , x) ∈

S. Thus

|S| =
∑

x∈X

|Gx | =
∑

x∈X

|G|

|G ·x|
= |G|

∑

x∈X

1

|G ·x|
,

(the second equality is from the Orbit-Stabilizer theorem). Now we need to sim-

plify the final expression, and to do this we divide X up into the orbits, say r of

them: O1, . . . ,Or (so O j ∈ X /G). Then we can rewrite the sum as,

∑

x∈X

1

|G ·x|
=

∑

O∈X /G

(

∑

x∈O

1

|O|

)

.

Then for each orbit the sum gives
∑

x∈O
1
|O|

= |O|
1
|O|

= 1. Thus each orbit con-

tributes 1 to the final sum, and therefore,

|S| = |G|
∑

O∈X /G

1 = |G| |X /G|.

The theorem now follows by combining this with (1.2) above. ❒

3The reader may like to see what the set S would be for the action of D3 on the set in Figure 1.2
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GROUP ACTIONS 1.15

FIGURE 1.5: The 6 colourings of a 2×2 square with 2 colours

Example 1.19. How many essentially different ways are there of colouring a 2×2

square given 3 coloured paints. Here ‘essentially different’ means that we do not

want to distinguish between 2 colourings that differ only be a rotation of the square.

Let us label the small squares A,B ,C ,D. If we did not use the term ‘essentially’

here, there would be 34 different possible colourings: 3 for square A, 3 for square B

and so on. In terms of symmetry, we have an action of C4 on the square, and hence

on all the possible colourings, and the essentially different ones are those that lie in

different orbits for this action. Thus, we want to know how many orbits there are

under the action of the rotation group C4 acting on the set X of 34 colourings.

We apply the orbit-counting theorem: so for each element of C4 we need to

know how many colourings are fixed by that element. For the identity I ∈C4, every

colouring is fixed, so X I = X and |X I | = 34. A colouring fixed by Rπ/2 ∈ C4 must

have all 4 small squares coloured the same, and therefore |X Rπ/2 | = 3. For R−π/2 the

answer is the same. However for Rπ, once we specify the colours of A and B , the

other two are determined, and thus there are 3×3 = 9 possibilities. Thus |X Rπ | = 9.

Consequently

|X /C4| =
1

4
(34

+3+9+3) = 24.

It is left as an exercise to find all such 24 possible colourings. The analogous ques-

tion with two colours gives 1
4 (24 + 2+ 4+ 2) = 6 as the answer, and the 6 possible

colourings are shown in Figure 1.5.

1.7 Problems

†Questions at the end marked with a † are beyond the syllabus, and just for interest

1.1 Let Z2 = 〈κ〉 act on R by ρ(κ)x = −x. Find the stabilizer and orbit of each ele-

ment x ∈R.

1.2 Suppose two groups G , H both act on a set X via homomorphisms ρG and ρH
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1.16 Problems

respectively, in such a way that, for all g ∈G , h ∈ H ,

ρH (h)◦ρG (g ) = ρG(g )◦ρH (h)

(one says the two actions commute). Show that this gives rise to an action ρ of

the Cartesian product group G ×H on X , defined by

ρ(g ,h)x = ρG (g )◦ρH (h)x.

1.3 Suppose G is an abelian group and acts on a set X . Show that if x, y ∈ X lie in

the same orbit then their stabilizers are equal: (a) deduce this from Proposition

1.6, and (b) prove it directly.

1.4 Let G be a finite group acting on the finite set X . For g ∈ G let X g denote the

subset of X consisting of those elements fixed by g ; that is

X g
= {x ∈ X |ρ(g )x = x}.

Suppose g1 is conjugate to g2, say g2 = hg1h−1. Show that x ∈ X g1 ⇐⇒ ρ(h)x ∈

X g2 . Deduce that |X g1 | = |X g2 |.

1.5 Draw a picture of a cube, and let O denote the group of all rotations of the cube

(called the octahedral group).

(a) Apply the orbit-stabilizer theorem to a face of the cube to find the order of

O.

(b) Now apply the same theorem to a vertex of the cube to check your answer.

1.6 For the group D3 of symmetries of the equilateral triangle (see first example),

write down the permutations of D3 arising as λ(R2π/3) and ρ(R2π/3), and finally

of conjugation by R2π/3.

1.7 Consider the action of a group G on itself by conjugation. Use the Orbit-Stabilizer

theorem to prove the Class Formula, which states that the number of elements

of G that are conjugate to g is equal to |G|/|C (g )|, where C (g ) is the centralizer

of g in G (see the appendix for centralizers).

1.8 Let ρ : G → Sym(G) be the action by right multiplication defined in lectures:

ρ(g )(h) = hg−1. Show this is an action, but that in general the map ρ′ : G →

Sym(G) given by ρ′(g )(h) = hg is not an action.

1.9 Suppose G acts on a set X . (a) Show that the action is effective if and only if

the homomorphism ρ : G → Sym(X ) is injective. (b) Show that an action is

transitive if and only if there is only one orbit, X itself

1.10 Suppose G acts on X and let x ∈ X and H =Gx . Suppose H ′ is conjugate to H .

Show that there is a point y ∈ X with stabilizer H ′. Deduce from the action of

D4 on the vertices of a square that r0 and rπ/4 are not conjugate in D4.

1.11 Let X be a finite set, and denote by P(X ) the power set of X (that is, the collec-

tion of all 2|X | subsets of X ). Now suppose a group G acts on X .
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GROUP ACTIONS 1.17

(i). Show that the following formula defines an action of G on P(X ):

g ·S = {ρ(g )x | x ∈ S} (g ∈G , S ⊂ X ).

(ii). Let κ : P(X ) → P(X ) be the ‘complement map’, κ(S) = S ′ = X \ S. Show

that κ is a bijection and is equivariant.

(iii). For k = 0, . . . , |X | denote byP(X )k the collection of those subsets of X with

cardinality k . Use the map κ from above to show that the action of G on

P(X )k is isomorphic to the action on P(X )n−k , where n = |X |.

(iv). Show that together, G andZ2 = 〈κ〉 define an action of G×Z2 on P(X ) (see

Problem 1.2 above).

1.12 Let H be a subgroup of K and K a subgroup of G ; that is H < K <G . Show that

the map

π : G/H →G/K , π(g H )= g K

is equivariant. (Here the actions of G on G/H and G/K are λH and λK , as de-

fined in Section 1.4.)

1.13 Let H and K be two subgroups of a group G , and suppose ψ : G/H →G/K is a

G-equivariant map for the actions λH and λK respectively.

(a) Show that ψ is surjective.

(b) Let g0 ∈G be such that ψ(H )= g0K . Show that H < g0K g−1
0 .

1.14 (a) Show the map φ given in Example 1.13 is equivariant, and hence deduce as

claimed that the actions of D3 on V and E are isomorphic.

(b) Now consider a square with vertices V = {A,B ,C ,D} and edges E = {e, f , g ,h},

and let D4 act on this square. By considering the fixed points of the elements

of the group show that the actions on V and E are not isomorphic.

1.15 Consider the action of the group D4 on the set of 21 points shown in Fig. 1.6

below. (i) Determine its Burnside type. (ii) Verify the orbit counting theorem

for this action of D4.

b b
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FIGURE 1.6
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1.16 Suppose a group G acts on two sets X and Y . Consider the set Map(X ,Y ) of all

maps from X to Y . Define an action ρM of G on this set of maps, by putting, for

φ ∈ Map(X ,Y ),

ρM (g )φ= ρY (g )◦φ◦ρX (g )−1

(note that ρX (g−1)= ρX (g )−1). Show first that ρM does indeed define an action

on Map(X ,Y ), and second that φ ∈ Map(X ,Y ) is fixed by all of G if and only if

φ is equivariant.

1.17 Consider the right action of a subgroup K on a group G . Show that the orbits

of this action are the left cosets of K , and deduce that the set of orbits is G/K

(showing the notation of cosets is compatible with the notation of orbit space).

1.18 Consider a disc divided into 6 equal sectors. You have 3 colours at your disposal

to colour the 6 segments. Find the number of distinct colourings there are,

where (a) distinct means ‘up to rotation’, and (b) it means ‘up to rotation and

reflection’.

1.19 † Suppose the group G acts on the set X and let H be a subgroup of G . Denote by

XH the subset XH = {x ∈ X |Gx = H }, and suppose x ∈ XH . Show that g ·x ∈ XH

if and only if g ∈ NG(H ) (the normalizer of H in G).

1.20 † Suppose H is a subgroup of G, and that H acts on a set X . It is natural to ask

whether one can extend the action of H to one of G. In general the answer is

no. However there is an extension of the set X which does allow this, defined as

follows.

Consider first the set G ×X , with an action of H given by

σ(h)(g , x) = (g h−1, h ·x),

where h · x denotes the given action of H on X (alternatively, you can write

ρX (h)x). Now define Y =G ×H X to be the quotient of G × X by this H-action.

Thus, an element [g , x] ∈ Y is an equivalence class,

[g , x] =
{

(g h−1, h ·x) |h ∈ H
}

⊂ G ×X .

(i). Show [e,h ·x]= [h, x] (for all h ∈ H and x ∈ X ).

(ii). Show that the formula

ρY (g )[g ′, x] = [g g ′, x]

defines a well-defined action ρY of G on Y .

(iii). Show that the map φ : X /H → Y /G defined by φ(H · x) =G · [e, x] is well-

defined, and defines a bijection between X /H and Y /G .
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1.21 † Let H and K be two subgroups of a group G . A subset of G of the form

H g K := {hg k | h ∈ H , k ∈ K } ⊆ G

is called a double coset. The set of all such double cosets is denoted H\G/K .

(i). The action λK of G on G/K (defined in §1.4) restricts on an action of H .

Show that each double coset can be identified with an orbit of this action

of H on G/K .

(ii). Let G = S3, with H ,K being the subgroups of order 2 given by

H = 〈(1 2)〉 , K = 〈(1 3)〉 .

List the double cosets of S3. [Hint: there are just 2 and they are not of the

same size.]

(iii). Now let G = S4, and let H ,K be as above. How many double cosets are

there?
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