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Solutions for Appendix A

1 Examples of groups

Exercises

A1.1 Prove (by contradiction) that each column and each row of the multiplication table of a

group contains only one of each element.

Solution Suppose there are two elements of the row of h that are the same. That is

hg1 =hg2 for some g1, g2 ∈G . Then multiplying on the left by h−1 shows that

hg1 =hg2 ⇒ h−1hg1 = h−1hg2 ⇒ g1 = g2.

A similar argument applies to elements of a column.

A1.2 Suppose G = {e, a,b} is a group of order 3. Find the only possible multiplication table (by

trial and error: recall each column and each row must have precisely one of each element).

Solution Start with,
e a b

e e a b

a a

b b

There is only one way to complete this so that each row and each column contain all 3

elements.

A1.3 Suppose G = {e, a,b,c} is a group of order 4. Show (by trial and error) that there are only four

possible multiplication tables. Show that three of these give isomorphic groups (obtained

by permuting the elements). There are therefore only two different groups of order 4, ‘up to

isomorphism’.

Solution The 4 possible multiplication tables are

e a b c

e e a b c

a a e c b

b b c e a

c c b a e

e a b c

e e a b c

a a e c b

b b c a e

c c b e a

e a b c

e e a b c

a a b c e

b b c e a

c c e a b

e a b c

e e a b c

a a c e b

b b e c a

c c b a e
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Note that the second and third are exchanged by swapping a and b throughout, while

the third and fourth are related by swapping b and c (which means they are isomor-

phic). The first is not isomorphic to the other three as every element satisfies g 2 = e .

A1.4 Suppose we know that a particular set and product (G ,⋆) satisfies the 1st, 2nd and 4th ax-

ioms of a group, but instead of the existence of inverse elements, we know each element a

has a left inverse and right inverse which may be different: that is, there are b and c such

that a ⋆b = c ⋆a = e . Show that in fact b = c , so that G is indeed a group.

Solution Suppose a ⋆b = a and c ⋆ a = e . Multiplying the first by c on the left shows

c ⋆ (a ⋆b) = c ⋆ e . Using associativity and definition of e gives (c ⋆a)⋆b = c . However,

c ⋆a = e by assumption, so that e ⋆b = c , or b = c , as required.

A1.5 Let F be a field, and let F∗ be the set of non-zero elements of F . Show that (F∗,⋆) is a group,

where ⋆ is multiplication in the field. [You may need to look up the definition of a field.]

Solution The associative property and existence of inverses follows immediately from

the definition of field. Moreover, for any field, this multiplicative group is Abelian.

A1.6 Show that the Cartesian product of two groups is indeed a group (as defined in Example (10)

above).

Solution Left to you

A1.7 Suppose all elements of a particular group G satisfy g 2 = e . Show that G is Abelian.

Solution Hint: consider (ab)2 = e , and use the fact that a = a−1 etc.

A1.8 To see a group of a totally different nature, consider the set of 6 functions

Φ=
{

f1(x) = x, f2(x) = 1−x, f3(x) = 1
x

, f4(x) = x−1
x

, f5(x) = 1
1−x

, f6(x) = x
x−1

}

.

Show that these form a group under composition, for example f2◦ f4 = f3. Which element is

the identity? Is this group isomorphic to Z6 or to Dih(6)?

Solution f1 is the identity element. The rest is left to you! Since f4 ◦ f2 6= f2 ◦ f4 (for

example), it is not isomorphic to the cyclic group, which is Abelian.
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2 Subgroups and cosets

Exercises

A2.1 Show that if H ,K are subgroups of G then H ∩K is also a subgroup of G .

Solution Use the subgroup criterion: (i) e ∈ H and e ∈ K and hence e ∈ H ∩K . (ii)

g ′i nH ∩K implies h ∈ H (whence h−1 ∈ H ) and h ∈ K (whence h−1 ∈ K ) and hence

h−1 ∈ H ∩K . (iii) Left to you.

A2.2 Let p be a prime number. Show that the only subgroups of Zp are the trivial group 1 and the

group Zp itself.

Solution Use Lagrange’s theorem: the order of a subgroup divides the order of the

group. Since |Zp | = p which is prime, any subgroup has order either equal to 1 (the

trivial group) or to p (the whole group).

A2.3 How does this change if p is not prime? (Hint: think about divisors of p .)

Solution Again, use Lagrange’s theorem: if H is a subgroup of Zp then |H | divides p . If

k |p then there is a subgroup isomorphic to Zk . Indeed if Zp = {0,1, . . . , p −1} then the

subgroup consisting of multiples of p/k is a cyclic group of order k (as you can check).

A2.4 Show that a non-empty subset H ⊂G is a subgroup if and only if,

g ,h ∈ H =⇒ g h−1
∈ H . (∗)

Solution Assume (∗). Since H is non-empty, let g ∈ H . Then (i) g g−1 ∈ H which means

e ∈ H . (ii) Also, if g ∈ H then, since e ∈ H , we deduce eg−1 = g−1 ∈ H . (iii) Finally if

h1,h2 ∈ H , then h−1
2 ∈ H (by part (ii)) and then h1(h−1

2 )−1 ∈ H so that h1h2 ∈ H . There-

fore H is a subgroup, by the subgroup criterion.

Converse: Suppose H is a subgroup, and suppose g ,h ∈ H . Then h−1 ∈ H and hence

g h−1 ∈ H which is the statement (∗).
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A2.5 Show that every subgroup of an Abelian group is a normal subgroup.

Solution Straightforward: g H g−1 = H g g−1 since G is Abelian, and that is equal to H .

A2.6 Consider the group G = S3 of permutations. Choose a subgroup H2 of order 2 and a sub-

group H3 of order 3 and write down their left cosets, and their right cosets. Which of H2 and

H3 is a normal subgroup?

Solution H3 = {e, (1 2 3), (1 3 2)} is the only subgroup of order 3, and is a normal sub-

group. On the other hand there are three subgroups of order 2, one of which is {e, (1 2)},

and that is conjugate to {e, (1 3)} (conjugate with (2 3)).

A2.7 Show that O(n) and SLn(R) are indeed subgroups of GLn(R) (as stated in the examples

above).

Solution For O(n), we have I ∈O(n) and A,B ∈O(n) implies

(AB−1)T (AB−1) = (B−1)T AT (AB−1) = B AT AB−1
=B I B−1

= I .

Thus AB−1 ∈O(n), as required for the subgroup criterion. For SLn(R), use the fact that

det(AB )= det(A) det(B ).

A2.8 For any group G and any subgroup H show that the normalizer NG (H ) is a subgroup of G .

Solution Clearly e ∈ NG (H ). Suppose k ∈ NG (H ). Then by definition, k Hk−1 = H .

Multiplying through on the left by k−1 and on the right by k shows H = k−1Hk , and

hence k−1 ∈ NG (H ). The remaining condition is left to you. . .

A2.9 For any group G and any subgroup H show that the centralizer CG (H ) is a subgroup of G .

Solution Suppose (i) Clearly e ∈ CG (H ). (ii) Suppose k ∈ CG (H ). then kh = hk for all

h ∈ H . multiplying on the left and right by k−1 gives hk−1 = k−1h whence k−1 ∈CG (H ).

(iii) similar and left to you!

A2.10 Consider the infinite dihedral group Dih(∞) defined by

Dih(∞) = 〈a,b | a2
= b2

= e〉 .

(see p.A.3). Show that the infinite cyclic subgroup generated by R = ab is a normal subgroup

of Dih(∞).
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Solution The elements of the infinite cyclic subgroup are (ab)n for n ∈ Z. Call this

subgroup Z (it is isomorphic to Z!). We want to shoe g Z g−1 = Z for all g i nDih(∞).

To do this, it is enough to check this for the generators of Dih(∞). Note that, (ab)−1 =

b−1a−1 = ba (since a = a−1 and b = b−1). Now,

a(ab)na−1
= a2b(ab)n−2aba = b ab ab . . .ab ab a = (ba)n

= (ab)−n .

Sinilarly, b(ab)nb−1 = (ba)n = (ab)−n (details left to you).

3 Homomorphisms

Exercises

A3.1 Let φ : G → H be a homomorphism. If φ is a bijection, show that φ−1 is also a homomor-

phism.

Solution Let g1, g2 ∈ G . Since φ is a bijection, there are k1,k2 ∈ G such that g1 = φ(k1)

and g2 =φ(k2). Then, since φ is a homomorphism, φ(k1k2) = g1g2. Then,

φ−1(g1)φ−1(g2) = k1k2 =φ−1(g1g2) :

the first equality is the definition of k1,k2, while the second follows by applying φ−1 to

φ(k1k2) = g1g2.

A3.2 Show that if k divides n then the map φ :Zn →Zk defined by φ(a)= a mod k is a homomor-

phism. Show that if k does not divide n this map is not a homomorphism.

Solution still to be written

A3.3 Find all homomorphisms of the cyclic group Z4 to the cyclic group Z6. [Hint: If H is a cyclic
group generated by a, and φ : H → G a homomorphism, then φ is entirely determined by
knowing φ(a).]

Solution Write Z4 = 〈a | a4 = e〉 and Z6 = 〈b | b6 = e〉. Let φ : Z4 → Z6 be a homomor-

phism, and put φ(a) = br . Then b4r = φ(a)4 = φ(a4) = e . That is, 4r = 0 mod 6. The

possibilities are r = 0 or 3. That is, φ(a) = e or φ(a) = b3. (The first homomorphism is

the trivial one, while the second is not. What is its kernel?)
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A3.4 Show that Dih(4) ≃ Z2 ×Z2 (the Klein 4-group). How many different automorphisms are

there?

Solution Answer: 6. Why? (Hint: think of the elements of order 2.)

A3.5 Let φ : G → H be a map between two groups and let

Γφ =
{

(g ,φ(g )) ∈G ×H | g ∈G
}

,

which is the graph of φ. Show that Γφ is a subgroup of G ×H if and only if φ is a homomor-

phism.

Solution Suppose first φ is a homomorphism. We need to show Γφ satisfies the sub-

group criterion, which comes in 3 parts:

(i) The identity element of G×H is (eG , eH ). And becauseφ is a homomorphism, φ(eG ) =

eH so that indeed (eG , eH ) = (eG ,φ(eG )) ∈ Γφ.

(ii) Now (g1,φ(g1)) and (g2,φ(g2)) ∈ Γφ so we want to show their product is also con-

tained in Γφ. But

(g1,φ(g1))(g2,φ(g2)) = (g1g2,φ(g1)φ(g2)) (by definition)

= (g1g2,φ(g1g2)) (since φ is a homomorphism)

which is indeed contained in Γφ.

(iii) Since (g ,φ(g )) ∈Γφ we need to show its inverse is too. But φ(g−1) =φ(g )−1 so

(g ,φ(g ))−1
= (g−1,φ(g )−1) = (g−1, φ(g−1)) ∈Γφ.

Conversely, suppose Γφ is a subgroup. We need to show φ is a homomorphism, which

just requires φ(g1g2) = φ(g1)φ(g2) for all g1, g2 ∈G . This is the reverse of the argument

in part (2) above and the details are left to the student.
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4 Quotient groups etc

Exercises

A4.1 Show that the map φ : R → C
∗ given in (A.4) is a homomorphism with kernel Z. Deduce

(from the first isomorphism theorem) that S1 and U(1) are isomorphic.

Solution We defined φ(t ) = e2πi t . The group operations are addition in R and multi-

plication in C
∗. To show φ is a homomorphism, we need only show that φ(t1 + t2) =

φ(t1)φ(t2). But,

φ(t1 + t2)= e
2πi (t1+t2)

= e
2πi t1e

2πi t2 =φ(t1)φ(t2),

as required.

A4.2 Show that S1 is isomorphic to SO(2) (defined in Chapter 2), using the map

ψ : R→ SO(2), ψ(x) = R2πx .

Solution Similar argument to previous problem.

A4.3 Prove the first isomorphism theorem (begin by showing φ is well defined).

Solution See MATH20101 notes (for example).

5 Automorphisms

Exercises

A5.1 Show Aut(Z4) ≃Z2, and if p is prime then Aut(Zp )≃Zp−1.

Solution Write Z4 = 〈a | a4 = e〉. Let φ : Z4 → Z4 be an automorphism. Then φ(e) = e .

The question is, what is φ(a)? For then φ(ak ) =φ(a)k . Since φ is a bijection, φ(a) 6= e . If

φ(a) = a2 then φ(a2) = a4 = e so such φ is not bijective. Therefore φ(a) = a or φ(a) = a3.

If φ(a) = a then φ is the identity.
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A5.2 Find all automorphisms of the group Dih(4) (see Exercise A3.4).

Solution still to be written

A5.3 Show that, for each g ∈ G , the map Cg : h 7→ g hg−1 is an automorphism of G . (Automor-

phisms arsing in the way are called inner automorphisms.)

Solution still to be written

A5.4 Consider the abstract dihedral group of order 8,

Dih(8) = 〈a,R | a2
= (aR)2

= R4
= e〉 .

Consider the three maps α,β and γ of Dih(8) to itself:

g e R R2 R3 a aR aR2 aR3

α(g ) e R R2 R3 aR2 aR3 a aR

β(g ) e R3 R2 R a aR3 aR2 aR

γ(g ) e R3 R2 R aR a aR3 aR2

Show that α and β are inner automorphisms. Show also that γ is an automorphsim (it is not

an inner automorphism). [Hint: show α(g ) = R g R−1. And if we write Dih(8) with generators
a and b (see ExampleA.2(8)), then γ(a)= b and γ(b)= a.]

Solution still to be written
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