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Chapter 1

Lecture 1: The Riemann zeta function

The Riemann zeta function is one of the most significant functions in modern analytic number theory,
although we won’t have sufficient time in these notes to fully discover the complete reasons why. In
essence, in order to understand prime numbers one needs to know about the zeros of the Riemann
zeta function.

1.1 Definition of zeta as Dirichlet series and Euler product

The Riemann zeta function is defined by the Dirichlet series

ζ(s) =

∞∑
n=1

1
ns

Remark. Since Riemann (1859) it is customary to use the notation s = σ + it, with σ, t ∈ R.

It is easy to see that for Re(s) = σ > 1∣∣∣∣∣∣∣
∞∑

n=1

1
nσ+it

∣∣∣∣∣∣∣ ≤
∞∑

n=1

∣∣∣∣∣ 1
nσ+it

∣∣∣∣∣
=

∞∑
n=1

1
nσ

≤ 1 +

∫ ∞

1
x−σdx

= 1 +
1

σ − 1
< ∞.

Thus the sum converges uniformly on any compact set in the half-plane Re(s) > 1 and, since each
function n−s is analytic in this half-plane, the Dirichlet series defines an analytic function, denoted by
ζ(s), on Re(s) > 1.

At the point s = 1 we can see that the sum does not converge, because it “equals” the harmonic series∑
n

1
n , which diverges.

We shall later see that this function has a meromorphic continuation into the whole complex plane
with the only simple pole at s = 1 (i.e. it is analytic everywhere except the point s = 1).
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Chapter 1. Lecture 1: The Riemann zeta function

Lemma 1.1. For Re(s) > 1, the Riemann zeta function satisfies the equation

ζ(s) =
∏

p

(
1 − p−s)−1

where the product is taken over all primes. This is known as the Euler product for the Riemann zeta
function.

Remark. Euler discovered this relation between the Dirichlet series and the product representation
for the Riemann zeta function in 1737, 89 years before Riemann was even born!

Proof. This is essentially the fundamental theorem of arithmetic, that says that every number greater
than 1 can be written uniquely as the product of primes (up to the order of factors).

Here’s the rough proof that gives the essential idea of what’s going on:

Recall the Taylor expansion for 1/(1 − x) with |x| < 1:

1
1 − x

= 1 + x + x2 + x3 + . . .

Hence, for each prime p in the Euler product(
1 − p−s)−1

= 1 + p−s + p−2s + p−3s + . . .

since |p−s| < 1 whenever Re(s) > 0 (and we are assuming Re(s) > 1).

Hence the Euler product is

(
1 + 2−s + 4−s + 8−s + . . .

)
×

(
1 + 3−s + 9−s + 27−s + . . .

)
×

×
(
1 + 5−s + 25−s + 125−s + . . .

)
× · · ·

and expanding out the brackets we see that since every integer n can be written as a product of primes
powers pk in essentially exactly one way, n−s appears once and only once. Therefore the Euler product
equals the Dirichlet series definition of the Riemann zeta function. �

Remark. This proof ignores all issues of convergence, but can be made rigorous by considering the
limit of truncations:

lim
P→∞

∣∣∣∣∣∣∣ζ(s) −
∏
p≤P

(
1 − p−s)−1

∣∣∣∣∣∣∣ = 0

The fact that the Riemann zeta function has an Euler product means that its logarithm can be written
in terms of a Dirichlet series:

Lemma 1.2. For Re(s) > 1,

log ζ(s) =

∞∑
n=2

Λ(n)
log n

1
ns

where Λ(n) is the von-Mangoldt function

Λ(n) =

log p if n = pk is a power of a prime
0 otherwise
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Chapter 1. Lecture 1: The Riemann zeta function

Proof. Starting from the Euler product,

log ζ(s) = log

∏
p

(
1 − p−s)−1

 = −
∑

p

log
(
1 − p−s) =

∑
p

∞∑
k=1

1
k

p−ks

where we use the Taylor expansion

log(1 − x) = −

∞∑
k=1

1
k

xk

valid for |x| < 1. Taking x = p−s and noting that Λ(n)
log n = 1

k when n = pk completes the proof. �

Lemma 1.3. For Re(s) > 1,
ζ′

ζ
(s) = −

∞∑
n=2

Λ(n)
ns

where Λ(n) is the von-Mangoldt function given above.

Proof. Differentiate w.r.t. s the result of the previous lemma, that for Re(s) > 1

log ζ(s) =

∞∑
n=2

Λ(n)
log n

1
ns ,

and note that
d
ds

log ζ(s) =
ζ′(s)
ζ(s)

and
d
ds

n−s = − log(n)n−s

and the fact that one can interchange differentiation and summation (since Re(s) is big enough to have
absolute convergence). �

1.2 Analytic continuation and functional equation

Theorem 1.4. The Riemann zeta function can be analytically continued into C \ {1}, and satisfies the
following functional equation, relating values at the point s with values at the point 1 − s,

ζ(s) = χ(s)ζ(1 − s)

where

χ(s) = 2sπs−1 sin( 1
2πs)Γ(1 − s)

= πs−1/2 Γ(1
2 −

1
2 s)

Γ( 1
2 s)

Remark. Riemann’s paper has two different proofs of this result. In Titchmarsh’s book The Theory
of the Riemann Zeta-Function there are seven distinct proofs!

We will prove this theorem following one of Riemann’s original proofs, via Poisson summation.
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Chapter 1. Lecture 1: The Riemann zeta function

1.2.1 Poisson summation

Lemma 1.5 (Poisson summation). If f ∈ L1(R) then

∞∑
k=−∞

f (k) =

∞∑
h=−∞

f̂ (h)

where

f̂ (u) =

∫ ∞

−∞

f (x)e−2πixudx

is the Fourier transform of f .

Proof. Let

F(α) =

∞∑
k=−∞

f (k + α)

Note that F(α) is a periodic function of α with period 1, and the conditions on f imply that the
series converges in L1([0, 1]) and also almost everywhere. Because of the L1 convergence, the Fourier
coefficients of F can be calculated by integrating term by term, so

F(α) =

∞∑
h=−∞

F̂(h)e2πihα (1.1)

where

F̂(h) =

∫ 1

0
F(α)e−2πihαdα

=

∫ 1

0

∞∑
k=−∞

f (k + α)e−2πihαdα

=

∞∑
k=−∞

∫ 1

0
f (k + α)e−2πihαdα

=

∞∑
k=−∞

∫ k+1

k
f (x)e−2πih(x−k)dx

by a simple change of variables x = k+α. Note that e−2πih(x−k) = e−2πihx, so the integrand is independent
of k. Furthermore note that the sum now adds up the integral over distinct unit intervals, and hence
we have

F̂(h) =

∫ ∞

−∞

f (x)e−2πihxdx

= f̂ (h)

Therefore, substituting back into (1.1) we have shown that

∞∑
k=−∞

f (k + α) = F(α) =

∞∑
h=−∞

f̂ (h)e2πihα

Setting α = 0 completes the proof. �
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Chapter 1. Lecture 1: The Riemann zeta function

Lemma 1.6. For u > 0, let

θ(u) =

∞∑
k=−∞

e−πk2u

then

θ(u) =
1
√

u
θ

(
1
u

)
Proof. For u > 0, let

f (x) = e−πx2u

so that the Fourier transform is

f̂ (h) =

∫ ∞

−∞

e−πx2ue−2πixhdx =

∫ ∞

−∞

e−πu(x+ih/u)2−πh2/udx

(from completing the square). Shifting the contour to make t = x + ih/u real, which can be justified
by the rapid decay of the integrand, we have

f̂ (h) = e−πh2/u
∫ ∞

−∞

e−πut2dt = e−πh2/u 1
√

u

with the last step coming from evaluating the Gaussian integral.

Therefore, we see that

θ(u) =

∞∑
k=−∞

f (k)

and by Poisson summation we have

θ(u) =

∞∑
h=−∞

f̂ (h) =
1
√

u

∞∑
h=−∞

e−πh2/u

=
1
√

u
θ

(
1
u

)
.

We will use this result in our proof of the functional equation for zeta. �

1.2.2 The Gamma function

For Re(z) > 0 the Gamma function is defined as follows:

Γ(z) =

∫ ∞

0
xz−1e−xdx .

The integral has 2 singularities: at 0 and at ∞, but we can easily see that it is absolutely convergent
for Re(z) > 0.

Properties:

1. Γ(1) = 1;

2. Γ(z + 1) = zΓ(z).

3. The Gamma function can be meromorphically extended to C using the above functional equa-
tion.
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Chapter 1. Lecture 1: The Riemann zeta function

4. Γ has simple poles at non-positive integers z = −n (n = 0, 1, 2, . . . ) with residue (−1)n/n!.

5. The reflection formula says that

Γ(z)Γ(1 − z) =
π

sin(πz)
.

6. The duplication formula says that

Γ(z)Γ(z + 1
2 ) = 21−2z√πΓ(2z)

7. Stirling’s Formula says that for large z with | arg(z)| < π − δ (for fixed δ > 0) we have

log Γ(z) = z log z − z − 1
2 log z + 1

2 log(2π) + O
(
1
z

)

1.2.3 Proof of the functional equation and analytic continuation

Let
ζ∗(s) = π−s/2Γ(s/2)ζ(s)

and let

ψ(u) =

∞∑
n=1

e−πn2u

Lemma 1.7. We have

ψ(u) =
1
√

u
ψ

(
1
u

)
+

1
2
√

u
−

1
2
.

Proof. Since the summand in θ(u) is even in n, we have

θ(u) = 1 + 2
∞∑

n=1

e−πun2
= 1 + 2ψ(u)

Lemma 1.6, from the Poisson summation section, says, θ(u) = θ(1/u)/
√

u, so

ψ(u) =
1
2
θ(u) −

1
2

=
θ(1/u)
2
√

u
−

1
2

=
ψ(1/u)
√

u
+

1
2
√

u
−

1
2

�

Lemma 1.8. For Re(s) > 1,

ζ∗(s) =

∫ ∞

0
us/2−1ψ(u)du.

Proof. We have for Re(s) > 1,

ζ(s) =

∞∑
n=1

1
ns
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Chapter 1. Lecture 1: The Riemann zeta function

and

Γ(z) =

∫ ∞

0
e−xxz dx

x
,

so

ζ∗(s) = π−s/2
∫ ∞

0
e−xxs/2 du

x

∞∑
n=1

1
ns

Switching the order of summation and integration (justified by absolute convergence)

ζ∗(s) =

∞∑
n=1

∫ ∞

0
e−x

( x
πn2

)s/2 dx
x

and then changing variables to u = x
πn2 (and note that dx

x = du
u ) we have

ζ∗(s) =

∞∑
n=1

∫ ∞

0
e−πun2

us/2 du
u
.

Now pull the sum inside the integral (justified by absolute convergence in the half-plane under con-
sideration) and we obtain the desired result. �

Lemma 1.9. We have

ζ∗(s) =
1

s(s − 1)
+

∫ ∞

1

(
u−s/2−1/2 + us/2−1

)
ψ(u)du.

Proof. We just shown that for Re(s) > 1,

ζ∗(s) =

∫ ∞

0
us/2−1ψ(u)du.

Split the integral into a integral from 0 to 1 and an integral from 1 to∞, which yields

ζ∗(s) =

∫ 1

0
ψ(u)us/2 du

u
+

∫ ∞

1
ψ(u)us/2 du

u
(1.2)

and letting x = 1/u, and noticing that dx
x = −du

u we see that the first integral equals∫ 1

0
ψ(u)us/2 du

u
=

∫ ∞

1
ψ(1/x)x−s/2 dx

x

We have just shown in Lemma 1.7 that

ψ(1/x) =
√

xψ(x) +

√
x

2
−

1
2

which means this integral equals∫ ∞

1

(
√

xψ(x) +

√
x

2
−

1
2

)
x−s/2 dx

x
=

∫ ∞

1
ψ(x)x−s/2−1/2dx +

1
2

∫ ∞

1
x−s/2−1/2dx −

1
2

∫ ∞

1
x−s/2−1dx

Since Re(s) > 1 the last two integrals exist and equal

1
s − 1

−
1
s

=
1

s(s − 1)

7



Chapter 1. Lecture 1: The Riemann zeta function

and so we have ∫ 1

0
ψ(u)us/2 du

u
=

∫ ∞

1
ψ(x)x−s/2−1/2dx +

1
s(s − 1)

.

Substituting this into (1.2) we have

ζ∗(s) =

∫ ∞

1
ψ(x)x−s/2−1/2dx +

1
s(s − 1)

+

∫ ∞

1
ψ(u)us/2−1du

which is the required formula. �

Proof of Theorem 1.4. When u gets large, ψ(u) decays exponentially quickly. Therefore the integral
exists (and is analytic) for all s since exponential decay beats polynomial growth. The only poles are
at s = 0 and s = 1, and come from the last term, 1

s(s−1)

Note that if you replace s with 1 − s, the RHS is unchanged. Therefore, we have ζ∗(s) = ζ∗(1 − s).

Substituting back for the definition of ζ∗(s) in terms of ζ(s) this means

π−s/2Γ(s/2)ζ(s) = π−(1−s)/2Γ((1 − s)/2)ζ(1 − s)

that is,
ζ(s) = χ(s)ζ(1 − s)

where

χ(s) = πs−1/2 Γ(1
2 −

1
2 s)

Γ( 1
2 s)

(1.3)

= 2sπs−1 sin(1
2πs)Γ(1 − s)

where the last equality uses the reflection formula for the Gamma function. �

1.3 The zeros of the Riemann zeta function

Recall the functional equation which says that

ζ(s) = χ(s)ζ(1 − s)

where

χ(s) = πs−1/2 Γ(1
2 −

1
2 s)

Γ( 1
2 s)

Since for Re(s) > 1, ζ(s) can be written as an absolutely convergent Euler product, none of whose
terms vanish, ζ does not vanish for Re(s) > 1. Hence, by the functional equation, zeta vanishes for
Re(s) < 0 only when χ(s) vanishes, which occurs at the poles of Γ(s/2), which are at 0,−2,−4,−6, . . . .
However, the pole of Γ(s/2) at s = 0 actually cancels the pole of zeta at s = 1, so ζ(s) , 0 at s = 0.

Therefore, we have shown that zeta has no zeros for Re(s) > 1 and no zeros other than −2,−4,−6, . . .
for Re(s) < 0 (these are called the trivial zeros).

This leaves the critical strip 0 ≤ Re(s) ≤ 1 to be studied.

Theorem 1.10. Let

N(T ) = # {ρ , ζ(ρ) = 0 , 0 ≤ Re(ρ) ≤ 1 , 0 < Im(ρ) ≤ T }

8



Chapter 1. Lecture 1: The Riemann zeta function

then for large T

N(T ) =
T
2π

log
T

2πe
+

7
8

+ S (T ) + O
(

1
T

)
where

S (T ) =
1
π

Im log ζ(1
2 + iT )

defined by continuous variation along the straight lines joining 2 to 2 + iT to 1/2 + iT, starting with
the value 0.

Furthermore the following result is known (this is due to von Mangoldt in 1905, though we won’t
prove it here)

S (T ) = O(log T )

Hence,

Corollary.
N(T ) =

T
2π

log
T

2πe
+ O(log T )

We won’t prove the theorem concerning S (T ) here, but assuming this result, we will provide a proof
for the formula for N(T ). (This is essentially what Riemann did in 1859, since he gave no hint of a
proof for bounding S (T )).

Proof of formula for N(T ). Define

ξ(s) =
1
2

s(s − 1)Γ(s/2)π−s/2ζ(s)

and note that this is an entire function which vanishes only at the zeros of zeta inside the critical strip.
(The trivial zeros are canceled by the poles of the Gamma function; the pole of gamma at s = 0 is
canceled by the s term; the pole of zeta at s = 1 is canceled by the s − 1 term).

Using the general formula for zeros and poles inside a closed contour, and the fact that ξ(s) has no
poles and no zeros outside the critical strip, we have

N(T ) =
1

2πi

∮
R

ξ′

ξ
(s)ds =

1
2π

{
change in argument around R of ξ(s)

}
where R is the rectangle with vertices 2, 2 + iT , −1 + iT and −1. Other than the horizontal parts, note
that this contour is all outside the critical strip. Furthermore, note that ξ(s) does not vanish on the real
axis (it is always positive). Thus if T is such that T , Im(ρ) for any zero ρ, then there are no zeros on
the contour R.

Now, the functional equation implies that ξ(s) = ξ(1− s), and since ξ(s) = ξ(s), which together imply
that

ξ( 1
2 + x + it) = ξ( 1

2 − x + it)

In other words, if we let ξ( 1
2 + x+ it) = reiθ then ξ( 1

2− x+ it) = re−iθ, and so the change in the imaginary
part of the logarithm from 2 to 2 + iT to 1/2 + iT , is exactly equal to the change in the imaginary part
of the logarithm from 1/2 + iT to −1 + iT to −1.

Since ξ(s) is positive on the real axis, the imaginary part of the logarithm (that is, the argument) of ξ
does not change along that line (in fact, the argument of ξ can be taken to equal 0 all along the real
axis). Hence we have shown that

N(T ) =
1
π

{
change along straight lines joining 2 to 2 + iT to 1/2 + iT of Im log ξ(s)

}
9



Chapter 1. Lecture 1: The Riemann zeta function

Now,
Im log ξ(s) = Im log(1

2 s(s − 1)) + Im log
(
Γ( 1

2 s)π−s/2
)

+ Im log ζ(s)

By definition, the change argument of Im log ζ(s) as s varies from 2 to 2 + iT to 1/2 + iT exactly
equals the definition of πS (T ). Furthermore, the change in Im log( 1

2 s(s − 1)) as s moves from 2 to
2 + iT to 1/2 + iT equals

Im log(−1
8 −

1
2T 2) − Im log(1) = π

Therefore if we define

θ(T ) = Im log
(
Γ( 1

2 s)π−s/2
)∣∣∣∣

s=1/2+iT

= Im log Γ( 1
4 + 1

2 iT ) − 1
2T log π (1.4)

then we have shown that

N(T ) =
1
π
θ(T ) + 1 + S (T ) (1.5)

We now deal with θ(T ) using Stirling’s formula. We have

Im log Γ( 1
4 + 1

2 iT )

= Im
{
(1

4 + 1
2 iT ) log(1

4 + 1
2 iT ) − ( 1

4 + 1
2 iT ) − 1

2 log( 1
4 + 1

2 iT ) + 1
2 log(2π) + O(1/T )

}
= 1

4 Im log
(

1
4 + 1

2 iT
)

+ 1
2T Re log

(
1
4 + 1

2 iT
)
− 1

2T − 1
2 Im log

(
1
4 + 1

2 iT
)

+ O(1/T )

Taking these terms separately, we have

• The first term is 1
4 Im log(1

4 + 1
2 iT ) = π

8 + O
(

1
T

)
• Since Re log(1

4 + 1
2 iT ) = log

∣∣∣1
4 + 1

2 iT
∣∣∣ we have that

1
2T Re log(1

4 + 1
2 iT ) = 1

2T log


√

T 2

4
+

1
16


= 1

2T log

T
2

√
1 +

1
4T 2


= 1

2T log
T
2

+ 1
2T log

(
1 +

1
4T 2

)
= 1

2T log
T
2

+ O(1/T )

• The last term is −1
2 Im log

(
1
4 + 1

2 iT
)

= −π4 + O(1/T )

Hence, the change of argument of gamma equals

π

8
+

1
2

T log
T
2
−

1
2

T −
π

4
+ O

(
1
T

)
=

1
2

T log
T
2e
−
π

8
+ O

(
1
T

)
where we write −T

2 as −T
2 log e. Substituting this into (1.4) we have

θ(T ) =
T
2

log
( T
2πe

)
−
π

8
+ O

(
1
T

)
10



Chapter 1. Lecture 1: The Riemann zeta function

Dividing by π, and substituting into (1.5) we see that

N(T ) =
T
2π

log
T

2πe
+ S (T ) +

7
8

+ O
(

1
T

)
Using the fact (which we won’t prove in this course) that S (T ) = O(log T ) we have

N(T ) =
T
2π

log
T

2πe
+ O(log T )

as required. �

1.3.1 The Riemann Hypothesis

Using the fact that ζ(s) = ζ(s) and the functional equation, we see that if ζ(ρ) = 0 with ρ in the critical
strip (that is, not a non-trivial zero), then 1 − ρ, ρ and 1 − ρ are also zeros.

That is, there is a symmetry about the real axis and about the line Re(s) = 1/2. This line is called the
critical line, and in 1859 Riemann conjectured that all the non-trivial zeros of zeta lie on the critical
line.

Conjecture (Riemann Hypothesis). All the zeros of the Riemann zeta function which lie in the critical
strip have real part equal to 1

2 .

Remark. It is traditional to write the zeros of zeta as ρ, and assuming the Riemann Hypothesis we
have ρ = 1

2 + iγ with γ ∈ R.

In the next lecture we will look at ways of calculating the zeros of zeta, and find out some known
results concerning them. In the third lecture we will discover how one can model these zeros by
random matrix theory, and some of the consequences of that model.
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Chapter 2

Lecture 2: The zeros of zeta

2.1 History of counting zeros on the line

In the previous lecture we saw that there are about T
2π log T

2πe zeros of the zeta function in the critical
strip, with the Riemann Hypothesis asserting that they all lie on the critical line. Let N0(T ) denote the
number of zeros which lie on the critical line. In 1914 Hardy showed that an infinite number of zeros
of zeta lie on the critical line. Later in 1921 Hardy and Littlewood showed that N0(T ) > AT for some
constant A.

The next great breakthrough occurred in 1942 when Selberg showed that there is a positive constant
c such that N0(T ) > cT log T , which means a positive proportion of zeros of the zeta function lie on
the line. In his 1947 PhD thesis, Szu-Hoa Min explicitly calculated the constant implicit in Selberg’s
work, and found it is very small.

By a different method, called “mollifiying”, Levinson showed in 1974 that that N0(T ) > 1
3 N(T ). In

1989 Conrey optimised that approach to show that more than two-fifths of all the zeros lie on the line
(his actual number is 0.4088). This estimate was not improved upon until 2010 when Bui, Conrey,
and Young increased it to 0.4105. Currently the record is that at least 41.28% of all zeros lie on the
critical line (Shaoji Feng, 2011).

2.2 Numerical calculations of zeros

In order to verify the Riemann Hypothesis numerically, one needs to check that the zeros lie exactly
on the critical line. This is hard to do for complex-valued functions (see Figures 2.1 and 2.2).

Last lecture we saw the Riemann xi function, defined as

ξ(s) =
1
2

s(s − 1)Γ(s/2)π−s/2ζ(s)

The functional equation is ξ(s) = ξ(1 − s), and the fact that ξ(s) = ξ(s) means that ξ(1
2 + it) is a real

function for t ∈ R.

Therefore sign changes of ξ( 1
2 + it) yield zeros of zeta (since the only zeros of ξ are the non-trivial

zeros of zeta).

Unfortunately Stirling’s formula implies that ξ(1
2 + it) decays exponentially quickly as t → ∞, making

numerical observation of sign changes difficult (see Figure 2.3).
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-1 1 2 3

-2

-1

1

2

Figure 2.1: Plot of the complex values of ζ(1
2 + it) for 0 ≤ t ≤ 50. The graph appears to go through

the origin (that is, there are values of t that appear to yield zeros of zeta on the critical line).

-1 1 2 3

-2

-1

1

2

-0.2 -0.1 0.1 0.2

-0.2

-0.1
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0.2

Figure 2.2: Plot of the complex values of ζ( 1
2 + 0.01 + it) for 0 ≤ t ≤ 50. Zooming in, it is clear there

are no zeros in this range.
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Figure 2.3: Plot of ξ( 1
2 + it) for 0 ≤ t ≤ 25 but it’s hard to see any sign changes. Zooming in, the zero

at 14.13 . . . is now clearly visible, but it’s hard to see the second zero at 21.02 . . . .
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Chapter 2. Lecture 2: The zeros of zeta

10 20 30 40 50
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3

Figure 2.4: Plot of Z(t) for 0 ≤ t ≤ 50. The sign changes are now obvious, and these are the zeros of
ζ( 1

2 + it) on the critical line.

Recall the functional equation
ζ(s) = χ(s)ζ(1 − s)

implies that χ(s)χ(1 − s) = 1, and so |χ( 1
2 − it)| = 1 for real t. That is, we can define a real function

θ(t) such that
χ(1

2 − it) = e2iθ(t)

(The reason for the factor of 2 becomes evident later). Equation (1.3) tells us

χ(s) = πs−1/2 Γ(1
2 −

1
2 s)

Γ( 1
2 s)

and so we have

χ( 1
2 − it) = π−it Γ(1

4 + 1
2 it)

Γ(1
4 −

1
2 it)

This means

2θ(t) = −t log(π) + 2 Im log Γ(1
4 + 1

2 it) (2.1)

= t log
( t
2πe

)
−
π

4
+ O

(
1
t

)
(This is a very similar analysis using Stirling’s formula to that which we did to find N(T ) in the
previous lecture).

This enables us to remove the exponential decay of ξ( 1
2 + it) by considering the function

Z(t) =

√
χ(1

2 − it)ζ(1
2 + it) = eiθ(t)ζ( 1

2 + it)

From the functional equation, one can see that Z(t) is an even real function for real t, and clearly
|Z(t)| = |ζ( 1

2 + it)|, and so if one can find t1 and t2 such that Z(t1) > 0 and Z(t2) < 0 then there must be
a zero of zeta on the critical line between t1 and t2. (See Figure 2.4).

To verify the Riemann Hypothesis up to a certain height, one numerically calculates all the zeros that
lie on the line (by counting sign changes), and then compares the answer with N(T ), which is the
number of zeros inside the strip. If the two are equal, then you’ve found all the zeros, and they all lie
on the line. This idea was made practicable by Turing in Manchester in 1952 (in his last paper before
he died), and in practice it involves an integral of S (t).

Using either a high-powered computers (eg a Cray supercomputer) or a distributed computing method,
the first 1013 zeros are known to lie on the critical line, as are the 175 million zeros around zero number
1020. (See Table 2.1).
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Chapter 2. Lecture 2: The zeros of zeta

Year n Author
c.1859 10? B. Riemann
1903 15 J. P. Gram
1914 79 R. J. Backlund
1925 138 J. I. Hutchinson
1935 1,041 E. C. Titchmarsh
1953 1,104 A. M. Turing
1956 15,000 D. H. Lehmer
1956 25,000 D. H. Lehmer
1958 35,337 N. A. Meller
1966 250,000 R. S. Lehman
1968 3,500,000 J. B. Rosser, J. M. Yohe, L. Schoenfeld
1977 40,000,000 R. P. Brent
1979 81,000,001 R. P. Brent
1982 200,000,001 R. P. Brent, J. van de Lune, H. J. J. te Riele, D. T. Winter
1983 300,000,001 J. van de Lune, H. J. J. te Riele
1986 1,500,000,001 J. van de Lune, H. J. J. te Riele, D. T. Winter
2004 900,000,000,000 S. Wedeniwski
2004 10,000,000,000,000 X. Gourdon and Patrick Demichel

Table 2.1: Historic records for verification of the Riemann Hypothesis

2.3 Euler-Maclaurin summation

Lemma 2.1 (Euler-Maclaurin formula). Let f ∈ C1. Then

N∑
n=M

f (n) =

∫ N

M
f (x) dx + 1

2 f (M) + 1
2 f (N) +

∫ N

M
(x − bxc − 1

2 ) f ′(x) dx .

Quick proof. Apply integration by parts to the following Riemann-Stieltjes integral:

N∑
n=M

f (n) =

∫ N+

M−
f (x)d(bxc)

=

∫ N+

M−
f (x)d(bxc + 1

2 − x) +

∫ N

M
f (x)dx

�

Longer proof. Note that for n an integer, for all n ≤ x < n + 1 we have (x − bxc − 1
2 ) = x − n − 1

2 , so∫ n+1

n
(x − bxc − 1

2 ) f ′(x) dx =

∫ n+1

n
x f ′(x)dx − (n + 1

2 )
∫ n+1

n
f ′(x)dx

=

(
(n + 1) f (n + 1) − n f (n) −

∫ n+1

n
f (x)dx

)
− (n + 1

2 ) ( f (n + 1) − f (n))

= 1
2 f (n + 1) + 1

2 f (n) −
∫ n+1

n
f (x)dx

and now sum from n = M to n = N − 1 and note that each summand, apart from f (M) and f (N)
appears twice, and that the integrals combine to be

∫ N

M
. �
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Figure 2.5: Plot of the first four Bernoulli polynomials.

Integrating by parts the remainder term,
∫ N

M
(x − bxc − 1

2 ) f ′(x) dx, leads to an improved formula. To
obtain this, we first introduce the Bernoulli polynomials:

Definition. The nth Bernoulli polynomial is a degree n polynomial Bn(x) such that for all t,∫ t+1

t
Bn(x)dx = tn

B0(x) = 1
B1(x) = x − 1

2

B2(x) = x2 − x + 1
6

B3(x) = x3 − 3
2 x2 + 1

2 x

B4(x) = x4 − 2x3 + x2 − 1
30

We have that B′n(x) = nBn−1(x) and there is a simple generating function for them

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!

Apart from the case n = 1, we have Bn(0) = Bn(1).

Definition. The Bernoulli numbers are defined as the constant term in the nth Bernoulli polynomial,
that is Bn = Bn(0)
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Chapter 2. Lecture 2: The zeros of zeta

The Bernoulli numbers initially shrink, but eventually get very large. We have

B0 = 1 B1 = −1/2 B2 = 1/6 B3 = 0
B4 = −1/30 B5 = 0 B6 = 1/42 B7 = 0
B8 = −1/30 B9 = 0 B10 = 5/66 B11 = 0
...

...

B20 = −174611/330 · · · B30 = 8615841276005/14322

With the exception of n = 1, the odd Bernoulli numbers are zero.

Note that
x − bxc − 1

2 = B1({x})

where {x} = x − bxc denotes the fractional part of the real number x.

After repeated integration by parts r times, the Euler-Maclaurin formula can be rewritten as

N∑
n=M

f (n) =

∫ N

M
f (x) dx + 1

2 f (M) + 1
2 f (N) +

br/2c∑
k=1

B2k

(2k)!

(
f (2k−1)(N) − f (2k−1)(M)

)
+ (−1)r+1

∫ N

M

1
r!

Br({x}) f (r)(x) dx .

2.3.1 Application to the Riemann zeta function

Let s ∈ C with Re(s) > 1, x ≥ 1 and f (x) = x−s. Then using Euler Maclaurin with the trivial error
term on the second sum yields

ζ(s) =

M−1∑
n=1

1
ns +

∞∑
n=M

f (n)

=

M−1∑
n=1

1
ns +

∫ ∞

M

dx
xs + 1

2 M−s − s
∫ ∞

M
B1({x})x−s−1 dx

=

M−1∑
n=1

1
ns +

[
u−s+1

−s + 1

]∞
M

+ 1
2 M−s − s

∫ ∞

M
B1({x})x−s−1 dx

and so, after a spot of rearranging,

ζ(s) =

M∑
n=1

1
ns +

M−s+1

s − 1
− 1

2 M−s − s
∫ ∞

M
B1({x})x−s−1 dx

Now observe that |B1({x})| ≤ 1
2 and |x−s−1| = x−Re(s)−1, and so the last integral will exist for Re(s) > 0.

Substituting s = 1/2 + it, we therefore have

ζ( 1
2 + it) =

M∑
n=1

1
n1/2+it +

M1/2−it

−1/2 + it
−

1
2M1/2+it + E

where the naive bound would suggest

|E| <
√

1
4 + t2

∫ ∞

M

1
2 x−3/2 dx =

√
1
4 + t2

√
M
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Chapter 2. Lecture 2: The zeros of zeta

and thus to have |E| < 0.01 one might think we need M ≈ 10, 000t2.

However, applying the improved Euler Maclaurin summation formula with just one extra integration
by parts, we obtain

ζ( 1
2 + it) =

M∑
n=1

1
n1/2+it +

M1/2−it

−1/2 + it
−

1
2M1/2+it +

1/2 + it
12

M−3/2−it + R

where
R = −

1
2

(1
2 + it)( 3

2 + it)
∫ ∞

M
B2({x})x−5/2−it dx

and so the true size of E is “only” about tM−3/2 (that is, the first omitted term), a considerable reduc-
tion. That is, we have

ζ( 1
2 + it) =

M∑
n=1

1
n1/2+it +

M1/2−it

−1/2 + it
+ O

(
1
√

M

)
+ O

(
|t|

M3/2

)
Note that if M = t both error terms give O(t−1/2).

Using M = 1000 and t = 14.1 we have 1/
√

M = 0.0316228 and t/M3/2 = 0.000449043 so we keep
the first error term but drop the second one, and estimating zeta using

ζ( 1
2 + it) ≈

M∑
n=1

1
n1/2+it +

M1/2−it

−1/2 + it
−

1
2M1/2+it

We find that
ζ(1/2 + 14.1i) ≈ 0.00470009 − 0.0270211i

and since θ(14.1) = −1.74272 we have

Z(14.1) ≈ e−1.74272i(0.00470009 − 0.0270211i) = −0.0274269 − 8.01765 × 10−6i

(ignore the spurious imaginary part).

Similarly, for t = 14.2,
ζ(1/2 + 14.2i) ≈ −0.00679108 + 0.0516247i

and since θ(14.2) = −1.70214 we have

Z(14.2) ≈ e−1.70214i(−0.00679108 + 0.0516247i) = 0.0520695 − 2.85538 × 10−5i

Thus there is a sign change of the real function Z(t) between t = 14.1 and t = 14.2, and this is a zero
of the zeta function.

2.4 The Riemann-Siegel formula

Another way to calculate Z(t) quickly and accurately in order to find these sign-changes was found by
Riemann himself, but never published. Siegel discovered it 50 years after his death in his unpublished
notes, which he wrote up for publication in 1932. It is now known as the Riemann-Siegel formula,
and is superior to Euler Maclaurin for moderately large values of t.

Theorem 2.2 (Riemann-Siegel formula).

Z(t) = 2
b
√

t/2πc∑
n=1

cos(θ(t) − t log n)
√

n
+ O(t−1/4)

where θ(t) is given by equation (2.1).
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Figure 2.6: Plot of the Riemann-Siegel approximation to Z(109 + x) with 0 ≤ x ≤ 1.

This has the advantage of needing fewer summands (only about
√

t) than Euler-Maclaurin to get a
decent error term, and also has the advantage of being manifestly real.

Remark. I only intend on giving a heuristic overview of this result. The actual proof by Riemann
involves a fair chunk of complex analysis, as is described by Berry and Keating as “a remarkable
achievement, because although it was one of the first applications of his method of steepest descent
for integrals it was more sophisticated than most applications today, in that the saddle about which
the integrand is expanded is accompanied by an infinite string of poles.”

The approximate functional equation (which can be derived by Poisson summation — add the de-
tails?) tells us that if xy = t

2π and if s = σ + it is near the critical line, then

ζ(s) =
∑
n≤x

1
ns + χ(s)

∑
n≤y

1
n1−s + O(t−1/4)

Putting σ = 1/2, choosing x = y =
√

t/2π and recalling that
√
χ(1/2 − it) = eiθ(t), so that χ(1/2+ it) =

e−2iθ(t), we see that

Z(t) = eiθ(t)ζ(1
2 + it)

= eiθ(t)
∑

n≤
√

t/2π

1
n1/2+it + e−iθ(t)

∑
n≤
√

t/2π

1
n1/2−it + O(t−1/4)

=
∑

n≤
√

t/2π

ei(θ(t)−t log n)

√
n

+
∑

n≤
√

t/2π

ei(−θ(t)+t log n)

√
n

+ O(t−1/4)

= 2
∑

n≤
√

t/2π

cos(θ(t) − t log n)
√

n
+ O(t−1/4)

as required.

Figure 2.6 shows a plot of the Riemann-Siegel approximation to Z(109 + x) with 0 ≤ x ≤ 1. Note
the zeros are still found by sign changes easily. At this height, the error in the approximation is about
0.006 and there are just over 12, 600 terms in the sum.

2.5 Turing’s Theorem (a Manchester connection)

In his last research paper before he died, Turing worked on numerically finding zeros of the zeta
function using the Manchester Mark I computer. He wrote
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Figure 2.7: Plot of S (t) for 280 ≤ t ≤ 320.

In June 1950 the Manchester University Mark 1 Electronic Computer was used to do
some calculations concerned with the distribution of the zeros of the Riemann zeta-
function. It was intended in fact to determine whether there are any zeros not on the
critical line in certain particular intervals. The calculations had been planned some time
in advance, but had in fact to be carried out in great haste. If it had not been for the fact
that the computer remained in serviceable condition for an unusually long period from
3 p.m. one afternoon to 8 a.m. the following morning it is probable that the calcula-
tions would never have been done at all. As it was, the interval 2π632 < t < 2π642 was
investigated during that period, and very little more was accomplished.

Whereas his improvement in the number of zeros calculated was, indeed, modest, the method he
introduced in this paper (to calculate N(T ) exactly and thus prove you had found all the zeros) was
a vast improvement on the previous ad-hoc methods employed. Indeed, it is still the main method in
use today. Turing wrote “The procedure was such that if it had been accurately followed, and if the
machine made no errors in the period, then one could be sure that there were no zeros off the critical
line in the interval in question.”.

Remark. Turing’s aim was actually to disprove the Riemann Hypothesis. He went on to write “The
calculations were done in an optimistic hope that a zero would be found off the critical line, and the
calculations were directed more towards finding such zeros than proving that none existed.”

Recall that S (T ) is the error in the number of zeros lying in the critical strip up to height T . Turing
showed that for any h > 0 and T > 168π one had∣∣∣∣∣∣

∫ T+h

T
S (t)dt

∣∣∣∣∣∣ ≤ 2.3 + 0.128 log
T + h

2π

That is, S (t) oscillates very closely around 0 (see Figure 2.7).

If you are counting zeros by sign changes and happen to miss a sign change (so miss two zeros), then
a implied value of S (T ) will start oscillating around −2 instead (see bottom right in Figure 2.8).

Thus, to prove no zeros have been missed, compute the numerically derived
∫ T+h

T
S (t)dt and check

whether it’s bigger than the bound Turing proved. (Thus you will actually need to compute the zeros
in [T,T + h] above your stopping point of T , but that is a small price to pay).

If h ≈ log T then that’s sufficient to tell whether S (t) is oscillating around 0 or around −2. (This is
done by contradiction: Assume a zero has been missed, and throw it in to the numerically derived
N(T ). If the integral of S (T ) gets bigger than its known upper bound, that contradicts the assumption
of a missing zero. That is, you have proven you have found all the zeros of the zeta function up to
height T , and they all lie exactly on the critical line).
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Figure 2.8: Plot of Z(t) for 280 ≤ t ≤ 320, and a plot of the deduced S (t) assuming the sign change
between two zeros at 294.965 and 294.965 (shown in red) was missed.

Having got to the end of this chapter, we are now able to calculate zeros of the zeta function lying on
the critical line, and know we have not missed any. Super-computers and distributed computing has
enabled tables, such as http://www.lmfdb.org/zeros/zeta/ or http://www.dtc.umn.edu/
˜odlyzko/zeta_tables/index.html containing billions of zeros to be collated. In the last lecture
we will look at the distribution of these zeros, and in particular in the gaps between them, and see
how that is modelled by random matrix theory.
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Chapter 3

Lecture 3: Connections between the Riemann
zeta function and random matrix theory

Having collected massive sets of zeros, one can then ask questions about their distribution — do they
come in clumps, or are they evenly spaced out? (Knowing N(T ) = T

2π log T
2πe + O(log T ) tells us that

the average gap between zeros is 2π
log(T/2π) , but these questions are deeper than that as they concern the

distribution of the spacing of the zeros, not just the mean).

In 1972, Hugh Montgomery, then a graduate student at Cambridge, was visiting Atle Selberg at the
Institute for Advanced Study at Princeton. Montgomery wanted to discuss his conjecture for how
he thought the gaps between zeros of the Riemann zeta function might be distributed. At tea that
afternoon, Montgomery was introduced to the physicist Freeman Dyson. After Montgomery told
him his conjecture, Dyson quickly recognized Montgomery’s results as being the same as the pair
correlation of eigenvalues of random Hermitian matrices. In 2006 Montgomery recalled recognising
the importance of the connection just made: “Just by chance this conversation took place. . . . This
happened even before I had published the paper. I knew it was important and worth following up.”

3.1 Flavours of random matrix theory

Recall that the structure of a matrix is important. For instance, if a matrix is hermitian (that is,
M = M†) then it has real eigenvalues (see figure 3.1), whereas if a matrix is unitary (that is, MM† = I),
then all its eigenvalues lie on the unit circle (that is, they all have magnitude 1), (see Figure 3.2).

A random matrix is a matrix-valued random variable, where the matrix has certain properties imposed
(such as being hermitian, or unitary, or whatever), and with a certain probability measure imposed.

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

Figure 3.1: The eigenvalues of a hermitian matrix
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Figure 3.2: The eigenvalues of a unitary matrix

• GUE:

– M be an N × N hermitian matrix with entries

Mi, j =


N(0, 1

2N ) + iN(0, 1
2N ) for i > j

N(0, 1
N ) for i = j

M∗
j,i for i < j

where N(0, σ2) is a Gaussian random variable with mean zero and variance σ2.

– The measure on this set of matrices is invariant under unitary transforms.

• Unitary with Haar measure

– The unique measure on the unitary group invariant under the action of any unitary trans-
form, i.e. for any fixed V , VU law

= U

– Can be realised via QR decomposition of a matrix with complex Gaussian entries

The choice of randomness matters, as can be seen by taking two unitary matrices, one chosen with
Haar measure and one chosen by picking the eigenvalues independently, uniformly at random on the
unit circle (see Figure 3.3).

Random matrix theory turns out to have many applications

• Nuclear physics (energy spectra of heavy nuclei).

• Quantum Chaos (is a system classically chaotic or integrable?)

• Genetics and population biology

• Correlation matrix of time series of stock prices

• Sea level and atmospheric pressure

• Bus arrival times in Cuernavaca, Mexico & spacing between cars parked in London.

• Longest increasing subsequence and solitaire
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Figure 3.3: The eigenvalues of a 100 × 100 Haar distributed random unitary matrix, compared with
100 points placed independently at random on the unit circle
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Figure 3.4: Wigner’s semi circle law.

• And many, many other applications.

However, we will only concentrate on one application: That to the zeros of the Riemann zeta function.

3.2 Simple questions for GUE matrices

One sample simple question is: For the GUE matrices, where all the eigenvalues lie on the line, how
many eigenvalues would you expect to find between a and b? This was one of the original questions
asked and solved by Wigner, and it turns out to be a semicircle.

Let λ1, . . . , λN be the eigenvalues of a hermitian matrix. Wigner showed that −2 ≤ a ≤ b ≤ 2, then

E
[
#
{
j : λ j ∈ [a, b]

}]
→

1
2π

∫ b

a

√
4 − x2dx

where the expectation is taken over the GUE. (See Figure 3.4).

Another question one could concerns the gaps between the eigenvalues. Because the eigenvalues are
real, they can be ordered: λ1 ≤ λ2 ≤ · · · ≤ λN . One can then look at the gaps between neighbouring
eigenvalues

si = λi+1 − λi
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Figure 3.5: The nearest neighbour spacing for eigenvalues 1,000 GUE matrices and the Wigner sur-
mise

One can then ask for the distribution of the si (after scaling so the average gap is 1 — this enables
large N limits to be taken). The actual result is complicated (and can be given in terms of solutions
to certain Painlavé differential equations) but Wigner came up with a good approximation for the
distribution of gaps, known as the Wigner surmise for the GUE:

p(x) =
32
π2 x2e−4/πx2

Figure 3.5 shows the Wigner surmise, plotted against the empirical (scaled) nearest neighbour spacing
distribution for a thousand 50 × 50 GUE matrices.

3.3 Unitary matrices

Denote the eigenvalues of U ∈ U(N) by exp(iθ1), . . . , exp(iθN). Weyl proved that the joint probability
density of eigenangles is

PN(θ1, . . . , θN) =
1

N!(2π)N

∏
1≤ j<k≤N

∣∣∣eiθk − eiθ j
∣∣∣2

This density can be reexpressed in terms of determinants, which enables all the useful tools and
techniques from matrix analysis to come into play.

We need to introduce Vandermonde determinants: For any set of complex numbers z1, . . . , zN the
vandermonde determinant is

det
(
z j−1

k

)
1≤ j,k≤N

= det


1 1 1 . . . 1
z1 z2 z3 . . . zN

z2
1 z2

2 z2
3 . . . z2

N
...

...
...

. . .
...

zN−1
1 zN−1

2 zN−1
3 . . . zN−1

N


Lemma 3.1. We have

det
(
z j−1

k

)
1≤ j,k≤N

=
∏

1≤ j<k≤N

(
zk − z j

)
Proof. Observe that both sides of the equation are homogeneous polynomials of degree N(N − 1)/2.
Secondly, note that both sides vanish whenever z j = zk (and since there are N variables, this accounts
for N(N − 1)/2 roots). Thus we have identified the two polynomials as the same up to some constant
multiplicative factor. Comparing the coefficient of the diagonal term in the matrix fixes that constant
as 1. �
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By rearranging the Vandermonde matrices enables us to prove

Lemma 3.2. We have
PN(θ1, . . . , θN) =

1
N!

det
{
KN(θk − θ j)

}
1≤ j,k≤N

where
KN(θ) =

1
2π

sin(Nθ/2)
sin(θ/2)

Proof. We have ∏
1≤ j<k≤N

∣∣∣eiθk − eiθ j
∣∣∣2 = det

(
ei(n−1)θ j

)
1≤n, j≤N

det
(
e−i(n−1)θk

)
1≤n,k≤N

(The dummy variable n is used twice here, once in both determinants, on purpose). Using the fact
that det A = det At and that det A det B = det(AB) and explicitly multiplying out the matrices, we see
that this equals

det

 N∑
n=1

ei(n−1)(θ j−θk)


1≤ j,k≤N

Finally, the inner sum is a simple geometric series, so

N∑
n=1

ei(n−1)θ =
eiNθ − 1
eiθ − 1

= ei(N−1)θ/2 sin(Nθ/2)
sin(θ/2)

where the last line comes from factoring eiN/2θ out from the numerator and eiθ/2 from the denominator
(the remaining terms being the definition of sine). Thus we see that

1
(2π)N

∏
1≤ j<k≤N

∣∣∣eiθk − eiθ j
∣∣∣2 = det

(
ei(N−1)(θ j−θk)KN(θ j − θk)

)
1≤ j,k≤N

from pulling the factor of 1/2π into each row, factoring out ei(N−1)θ j from the jth row, and e−i(N−1)θk

from the kth column, and noting their product equals 1. �

Define
R(N)

n (θ1, . . . , θn) =
N!

(N − n)!

( π

−π

PN(θ1, . . . , θN) dθn+1 . . . dθN

which can be thought of a related to the probability density of finding eigenangles (regardless of
labelling) at each of the angles θ1, θ2, . . . , θn, ignoring the position of the remaining N−n eigenangles.

It can be shown that
R(N)

n (θ1, . . . , θn) = det
{
KN(θ j − θk)

}
1≤ j,k≤n

R(N)
1 (θ1) = N

2π is just the density of eigenvalues on the unit circle. Note it is independent of position,
θ1. Therefore to get a non-trivial limit as N → ∞ the eigenangles must be scaled by their density.
Writing x j = N

2πθ j, then

Rn(x1, . . . , xn) = lim
N→∞

R(N)
n

(
2π
N

x1, . . . ,
2π
N

xn

)
= det

{
K(x j − xk)

}
1≤ j,k≤n

where
K(x) =

sin(πx)
πx
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Figure 3.6: The pair correlation function and its Fourier transform

In particular, for α < β

lim
N→∞
EN

1
N

#
{
θm, θn : α ≤ (θm − θn)

N
2π
≤ β

}
=

∫ β

α

R2(x, 0) dx

=

∫ β

α

1 − (
sin(πx)
πx

)2 dx + δ(α, β)

where EN denotes expectation with respect to the Haar measure onU(N), and where δ(α, β) = 1 if α ≤
0 ≤ β and equals 0 otherwise. R2(x, 0) is called the two-point correlation function or pair correlation
function.

Another way to consider this result is to consider smooth function f . We have

lim
N→∞

1
N

∑
j,k

f
(
(θ j − θk) N

2π

)
=

∫ ∞

−∞

f (x)
1 − (

sin(πx)
πx

)2

+ δ(x)
 dx

=

∫ ∞

−∞

f̂ (u) (min(1, |u|) + δ(u)) du

where the second line follows from the Plancherel’s identity about Fourier transforms,
∫

fg =
∫

f̂ ĝ.
See figure 3.6 for a plot of this function. It is that that was the first connection made with the distri-
bution of the zeros of Riemann zeta function.

3.4 Montgomery’s pair correlation conjecture

In 1973 Hugh Montgomery was considering the distribution of the zeros of the Riemann zeta function,
in particular in trying to prove that there are a positive proportion of zeros which are closer together
than 1/2 times their average spacing, as this would have significant consequences concerning the class
number problem (which is an old problem from around the time of Gauss, determining the negative
quadratic fields Q(

√
d) with d < 0 have class number h(d) = n).

The h = 1 case was solved by Baker, Stark, Heegner in 1966, 1967 and 1952. Imaginary quadratic
fields with class number 1 (i.e. those with unique factorisation) are d = −1, −2, −3, −7, −11, −19,
−43, −67, and −163 only.

Montgomery and Weinberger (1973) solved the problem for h = 2 (and independently Stark, too, by
a different method). The Montgomery-Weinberger result is based on showing that if h(d) is small
then the low zeros of related L-functions lie on the critical line and are very regularly spaced. Finding
zeros closer together than they “should be” rules out h(d) being small for that d.
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Montgomery defined

F(α) = F(α,T ) =
1

T
2π log T

∑
0≤γ,γ′≤T

T iα(γ−γ′)w(γ − γ′)

where
w(u) =

4
4 + u2

is a weight function (which turns up naturally in the analysis).

He proved:

Theorem 3.3 (Montgomery). If the RH is true then F(α) is a real, even, non-negative function, and
uniformly for 0 ≤ α ≤ 1

F(α) = α + o(1) + (1 + o(1))T−2α log T

(Actually, he proved it for the case α ≤ 1 − ε, the gap being filled in jointly with Goldston).

This is clearly useful for evaluating sums over differences of zeros. If we let r ∈ L1 and set the Fourier
transform to be

r̂(α) =

∫ ∞

−∞

r(x)e2πiαxdx

then multiplying F(α) by r̂(α) and integrating we get

1
T
2π log T

∑
0<γ,γ′≤T

r
(
(γ − γ′)

log T
2π

)
w(γ − γ′) =

∫ ∞

−∞

r̂(α)F(α)dα

By choosing a suitable function r, whose Fourier transform was supported in [−1, 1] Montgomery
was able to prove

Theorem 3.4. Let
λ = lim inf

n→∞
(γn+1 − γn)

log γn

2π
then λ ≤ 0.6072.

Finally, based on a heuristic analysis using the Hardy-Littlewood k-tuple conjecture, he conjectured

Conjecture 3.5. For any fixed bounded M > 1, then uniformly for 1 ≤ α ≤ M,

F(α) = 1 + o(1)

By taking the Fourier transform, this then implies

Conjecture 3.6 (Pair Correlation Conjecture).

1
T
2π log T

∑
0<γ,γ′≤T

0<γ′−γ≤2πβ/ log T

1 ∼
∫ β

0

1 − (
sin(πx)
πx

)2 dx

This, you will recall is exactly the same as for unitary matrices chosen with Haar measure (or for
GUE matrices). (See Figure 3.7).

Since that connection was established, it has been checked extensively — numerically (initially and
foremost by Odlyzko in the 1990’s, who provided graphs such as Figures 3.7 and 3.8), heuristically
and theoretically.
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Figure 3.7: The empirical pair correlation for 8 × 106 zeros of the Riemann zeta function near the
1020th zero

Figure 3.8: The empirical nearest neighbour spacing for the zeros of the Riemann zeta function near
the 1020th zero
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The connection was further developed by Jon Keating and Nina Snaith who discovered that the Rie-
mann zeta function itself (not just its zeros) could be modelled using random matrix theory, and their
results paved the way for the first reasonable conjecture on the moments of the zeta function to be
created, something number theorists had been searching for since the 1910’s. In another direction,
there are other L-functions, not just the Riemann zeta function, all sharing similar properties. Con-
sidering their low lying zeros, and averaging over “families” of L-functions, Katz and Sarnak showed
they could be modelled by other types of random matrices, the particular type depending upon the
family.

30


