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ow does Google decide which web sites are important? It
uses an ingenious algorithm that exploits the structure of
the web and is resistant to hacking. Here, we describe this

PageRank algorithm, illustrate it by example, and show how it
can be interpreted as a Jacobi iteration and a teleporting random
walk. We also ask the algorithm to rank the undergraduate math-
ematics classes offered at the University of Strathclyde.
PageRank draws upon ideas from linear algebra, graph theory
and stochastic processes, and it throws up researchlevel chal-
lenges in scientihc computing. It thus forms an exciting and
modern application areathat could brighten up many a mathe-
matics class syllabus.

Intrcduction
Everybody knows about the search engine Google, and most
people use it. Why is it so successful? At the Google website http:/
/www.google.com/technology I all is revealed.

'The heart of our software is PageRankrM; a system for ranking web
pages developed by our founders Larry Page and Sergey Brin at Stan-
ford University. And while we have dozens of engineers working to
improve every aspect of Google on a daily basis, PageRank continues
to provide the basis for all of our web search tools.'

PageRank, a sleek algorithm in computational graph theory,
shows how one killer mathematical idea can build up a global
brand name. Google began as a research project for Ph.D. candi-
dates Page and Brin when they were, respectively,24 and23years
old. It now answers over 200 million queries per day.

Our aim here is to describe PageRank, illustrate it via simple
examples, and use it to pull together ideas from numerical analy-
sis and stochastic processes. We also point out, via a somewhat
frivolous example, how its utility extends well beyond the world
wide web.

The observations in sections 4 and 5 are not new. Indeed, both
the linear system/eigenvector formulation and the random walk
interpretation are mentioned in the original work [ 5]. However,
we believe that there are benefits to be had from a unified, low-
level review - in particular, teachers in further and higher educa-
tion may f,rnd that this material can be slipped into a class on
linear algebra, graph theory, stochastic processes or scientific
computation. We also see it as a jumping-off point for student
projects.

The PageRank Algorithm
Search engines must do a number of tasks. Here are three impor-
tant ones.

Task I Locate web pages and store pertinent information in
some sort of archive.
Task 2 In response to a user's query, perform a real-time compu-
tation on the archive to hnd a list of relevant web pages.

Task 3 Decide the order in which to report these pages to the
user, on the basis of (a) their relevance to the query and (b) their
overall imnortance.
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PageRank pertains exclusively to the third task. Its mission is to
measure the importance of each page on the web, so as to inform
part (b) of the beauty contest.

Although the precise details of Google's inner workings are not
available to the general public, the basic PageRank algorithm has

been publicised by Page and Brin U5l. Typing'PageRank'into
Google brings up many articles, tutorials, essays, threads, and
even diatribes. As is the way with the web, these are of variable
quality. (Presumably, those with the highest PageRankings will
be the best!)

Home Biography Photos Hobby degree

Home0lll

Biographyl000

Photos

Hobby

To describe the algorithm, we first think of the web as a
directed graph. Figure I shows a dramatically simplified model
of the web that consists of 4 pages, HOME, PHOTOS, HOBBY
and BIOGRAPHY The arrows indicate links, so, for example,
there is a link from HOME to BIOGRAPHY and from HOBBY
to PHOTOS. We can store this information in a 4 by 4 adjacency
matrix, lI{ as illustrated in Table I . Generally, W(i, ) is equal to 1

if there is a link from the ith page to thejth page, and zero other-
wise. The degree of the ith page (og more precisely, the out
degree) is defined as the total number of links going out from that
node. Equivalently, it is the sum of the entries along the ith row of
the adjacency matrix. Table I includes the degree information for
Figure l.

To generalize this concept, we need some notation.

o Let there be Nweb pages, arbitrarily labelled 1,2,. . . , N.

0

0

0

I

0

0



t Let Ll/be the N x N adjacency matrix, so the (i, i) element, w,, ,
equals I if there is a link from page i to page j , and equals zero
otherwise.

r Let deg; denote the degree of the ith node, so deg,,= Li=,* r.

We also assume that that deg, + 0 for all I < i < N. (In practice,
pages with no outgoing links - dangling pages - must be treated
specially.)

The PageRank algorithm proceeds iteratively, assigning a value
rrt'l to theT'th page at the nth iteration. The iteration is

N _lr rl
r)'t =(t-dl+a\""iir, (l)

i=l

Here, d is some constant in the range 0 < d < 1. We will use

d = 0.85 unless otherwise stated. The iteration can be justified
quite easily. The key idea is to regard a link from i to7 as a vote of
confidence for pageT from page l. So the importance of pageT can
be measured by looking at the links coming in to that page. It
makes sense to weight the votes according to the level of impor-
tance of the voter - a vote from an important page should carry
more weight than a vote from an unimportant page. It also makes
sense to give each node an equal influence by scaling the weight
of its vote by the number of votes that it casts. This means that
the weight wu gets scaled to w , I deg,. The final twist in the algo-
rithm is the introduction of the constant d. Each node gets given

a ranking of | - d for free, and then gets d times the value arising
from those votes of confidence. (We will see later that d is a little
less mysterious when other interpretations of the algorithm are

taken.)
Summarizing the arguments above, the iteration (l) for updat-

ing the ranking of pageT could be described as follows.
For each page i that points toj, add in the scaled value of the

current ranking, r,I' 'l ldeg,.
Take d times this sum and add I - d.

Examples
For the example in Figure I we have

Taking d = 0.85 and starting with the initial guess r,u = l,
obtained the following results, to four decimal places,

link there from HOBBY, and BIOGRAPHY and HOBBY share

last place.
Suppose we alter the network by adding a link from PHOTOS

to BIOGRAPHY, see Figure 2. Because PHOTOS is more
important than HOBBY we would expect this new link to count
morethan thelinkfrom HOBBYto PHOTOS, so BIOGRAPHY
should jump up the rankings. PageRank on this new network
sives

HOME

BIOGRAPHY

PHOTOS

HOBBY

1.850

0.8583

0.8583

0.4333

|.4285

0.0390

0.8583

0.6742

0.9620

0.8538

0.599 r

l 5852

0.9620

0.8538

0.5991

fo I I rl

w=lt 0 0 0l

l1 0 0 0l

lr o r oJ

which confirms our prediction.

Figure 3 shows a network with a home page and a set of five lec-
tures. Each lecture points to the next, with the last one pointing
back to HOME. No matter what ordering we use for the pages,

the adjacency matrix for this network is
HOME

BIOGRAPHY

PHOTOS

HOBBY

010
001
000
000
000
100

000
000
100
010
001
000

2.2750

0.4333

0.8583

0.4333

0.7946

0.9788

0.7946

r.7687

0.6515

0.9282

0.6515

0.9280

We see that after 20 iterations, the PageRank values appear
to have settled down in their first two decimal places. (Conver-
gence of the algorithm is discussed in the next section.) As we

would expect, HOME, which is pointed to by all other pages,

receives the highest ranking. PHOTOS is next, because of the

W=

This symmetry suggests that all pages should have equal
PageRank, and this is confirmed by the observation thatr, = I is a

fixed point of the iteration (l).

Iteration number

Iteration number

ztJ
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If we alter the network so that all lectures point back to HOME,
as illustrated in Figure 4, then the ranking becomes, to four
decimal places,

tE7

+E
\ E

which is perhaps a more reasonable reflection of the relative
importance of the pages.

Our examples suggest that you can tinker with the Google
PageRank values for your web pages by reorganizing the
local connectivity structure. While this is true, and the relative
orderings of your pages may change, the effect on the abso-
lute PageRankings is likely to be minimal. Indeed, one of the big
advantages of PageRank over earlier systems is its insensitivity to
spammerswho seek to inflate their rank by devious means. To get

a high overall PageRank, your page must be referenced by other
high-ranking pages, something that is hard for any particular

€

individual to influence. Also, by focussing solely on the link
structure, and not the web page content, PageRank, unlike some
predecessors, cannot be misled by the insertion of important
sounding words or phrases. Of course the system is not com-
pletely hack-proof. The article [2] mentions that a concerted
effort by one cybersmith convinced Google to return his friend's
home page as the top-ranking match to 'talentless hack.' That
article also describes how a well-referenced spoof site

http ://wwwcoxar.pwp. blueyonder.co. uk/

became the number one choice for 'weapons of mass destruc-
tion.'There is also a positive feedback aspect to the process: lots
of websites now refer to those two examples, giving them extra
votes of confidence. A brute force approach to rank inflation
may also be adopted; some commercial sites are willing to pay for
incoming links [7].

The documents [3, l6] and the book [] give more details about
how web administrators can use PageRank to their advantage.

Having discussed and illustrated the algorithm, in the next two
sections we show that PaseRank can be looked at from other
angles.

lacobi lteration
Suppose we have a linear system of simultaneous equations,
Ax = b, where A e RN'N and b e Rx are given and x e RN is to.be
found. If we have a current guess for the solution, {"f "}i=,,
then we may use theTth equation.

lauxo = b,,

* 7 and solving for

Using this formula for j - 1,2, . . . , N, gives what is known as the

Jacobi it eratior. Of course, we require a,, + 0 for all i = l, . . ., Nin
order for the iteration to be well defined. If we split I into

A:2+ L+U,

where! is diagonal, I is strictly lower triangular and Uis strictly
upper triangular, then standard numerical analysis results, see for
example, [4], show that the iteration converges to a unique solu-
tion x if
p(>-'(z + u)) < ,. (r)

Here p denotes the spectral radius of a matrix, that is, the largest
of the moduli of the eigenvalues. Further, the convergence is

linear with a rate at least as fast as p: given any vector norm ll 
. 

ll,

there is a corresponding constant C such that the error,
err['] e RN with errj'l = ,],"1 - *0, satisfies

ll"'/'rll < cor'r .

Simple algebra shows that the PageRank iteration (l) is precisely
the Jacobi iteration applied to the system

(r - aw'D ')r = (r- d)e,

where .l is the identity matrix.

HOME

LECTURE 1

LECTURE 2

LECTURE 3

LECTURE 4

LECTURE 5

1.9879

t.839'7

0.9319

0.5460

0.3821

0.3t24 to find a new value for xr. Inserting xLr'-'l fot k
x, in this way, we get the iteration

t ( 
" tr-,r)xt,'t = -l b,- Zo u*u l.qli\ k-l-ktt )

Mathematics TODAY DECEMBER 2003 194

(3)



,y r e RN'N is the transpo se of W, so(Wr ) u = (W) i,, D is the diag-
onal degree matrix,

D:
0 ... 0

d2:
0

0dr
a pNxN

and e is the vector of ones.

The left-hand side of (2) reduces to p(dWr D-t ) in this case. By
construction, W'D-t has column sums equal to one, so

lW'o-'ll, = l, where ll.ll, denotes the r, norm. Since the spectral
radius is bounded above by any subordinate vector norm we have
plWr Dal < l, so

ildwr DJ) < d.

So choosing d < 1 ensures that we satisfy the convergence condi_
tion (2).

It is clear from (l) that nonnegativity in the starting vector is
preserved; that is

r*ror ) 0 forall 1 < k < N + rj't r0 forall | < k < 1y' and I < n.

Hence the solution r must have nonnegative components.
Premultiplyingby e'in (3) gives

e, r - derwr D-'r = (1 _ d)er e,

which simplifies to

llrll, - allrll, = 0 - d)N.

So llrll, = N, afact that can be checked in the examples of the
previous section.

In summary

the PageRank iterates converge to the solu^tion r of the linear system
(3). This solution satisfies 4 ) 0 and LL_,n = N. The pageRank
algorithm corresponds to the Jacobi iteiitioh applied to thisiystem,
and it converges linearly with rate atleast d.

It is perhaps worth emphasizing that d not only controls the
linear convergence rate but also affects the solution. For example,
changing from d = 0. 85 to d = 0.7 in the example of Figure 4 com-
presses the PageRanks to

HOME

LECTURE 1

LECTURE 2

LECTURE 3

LECTURE 4

LECTURE 5

1.9020

r.6314

0.8710

0.6048

0.5117

0.479r

In the extreme, and non-useful, case where d = 0, from any start-
ingvectorrl0l the iteration produces the exact solution, rlrl = e, in
a single step.

A Telepoding Random Walk on the Web
To connect PageRanking to stochastic processes, we first intro-
duce a few basic concepts. A discrete time, finite state, Markov
chain is determined by a transition matrix, P e R'*N. Given that
the process is at state i at time n-7, p,t gives the probability that
the process will be at state/ at the next time level, n. Because the
process must be somewhere at time n, those probabilities must
sum to on";\l 

-, 
p,o = 1. This means that P is a s t o chas t ic matrix.

In many cases, the probability of being in stateT after a large
number of steps settles down to a fixed value n,, no matter what
initial state was chosen. Equivalently, r, is the proportion of time
that we spend at stateT in the.long time limit. Such a vector
n € RN, which must satisfy )i rt = f. is called an invariant
meesure. If it exists it will satisfy pr n = fi, that is, it will be an
eigenvector of Pr corresponding to the eigenvalue I [13, 17].
There can be no eigenvalues bigger than I in modulus, because a
stochastic matrix has llP'll, = t. and pt pt < llr'1, .

Consider now the /.osiie.t of taking u lunHo- walk on the
web. Having visited a web page at time n-l,we look at the links
coming out of that page and choose one of them at random, uni-
formly, to visit at time n. If we are currently at page i, then the
probability of visiting page j on the next step is

I O if w . =0, (no link exists),
(n

l;* if w,, - l, 1a link exists).

The transition matrix for this Markov chain is thus p = D-tW.
Imagine surfing the web in this way for a few billion years. A
measure of the 'well-connectedness'of pageTis the proportion of
time that we spend there, ultimately. This is precisely the quantity
n, mentioned above. A possible difficulty with this picture is that
we may get stuck at a web page with no outgoing links, or more
generally, may cycle around an isolated set of pages. To get
around this, we may switch to a teleporting random walk. At each
time, we flip a biased coin that lands heads with probabilityl - d.
If the coin shows heads, we jump to a page chosen at random,
uniformly, over the whole web. Otherwise we follow a link as
described above. The transition matrix for teleporting is F / i/,
where F € RN"N is a matrix with all entries equal to one. It follows
that the transition matrix for the overall teleporting random walk
is

,=('-f)o+ctD-lw,

It is intuitively reasonable that the teleporting trick gets around
difficulties associated with the construction of an invariant
measure. More formally, it ensures that the Markov chain is
ergodic so that there is a unique, nonnegative solution to the
systemPrn = ft, where we normalise so that }i=rnr = I [13, l7].
Using (4). this linear sysrem is

(l+F+d(D'w)')n=n.
\N )

which, since Fn = e and (D'W)' =Wr D r, may be written

(I - dwr D r;r = 
(1- d) 

s.

10
01

0

:

0

T_ a pNxN

0 ,. 0 1

ch

0

:

0

f'l
"=lll.o'l:l

L'l

(4)

t\l
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Comparing (5) and (3), we make the connection that n = r I N:
the PageRank solution, when scaled by the factor N, is precisely

the invariant measure for the teleporting random walk. We can

take the connection further. Given a transition matrix we may

apply an unscaled version of thepower method([4]) in an attempt

to compute the invariant measure by regarding it as the

eigenvector of the largest eigenvalue of Pr . Having chosen xtol,

with x!'r >0 and Ii=,"1t' =1, this gives xt'l -Ptxt'-'l. Using
(4), this iteration becomes

ll-n \r
xt,l =l'-u F+dD-tW lxt,-'|,

\N )

but since Fr xtnt = e for all n, it simplifies to

*a - 9: !)e 
+ dwr D-txt,-tt.

N

This is precisely the original PageRank algorithm 1l ) with Nxl'l
playing the role of rtnr.

In summary

the normalized PageRank vector r / N is the unique invariant measure

for a surfer who takes a teleporting random walk on the web, with

transition matrix P in (4). The probability of a teleporting jump on

each step of this process is I - d' The PageRank algorithm corresponds

to applying the power method to compute the invariant measure as the

dominant eigenvector of P' .

Ranking Mathematics Glasses
The PageRank algorithm need not be confined to web pages' It
could conceivably be let loose on any set of objects that have

pairwise attachments. We note that the algorithm (1) continues to

make sense when the w ii are real-valued, that is, in the case of

weighted edges, and, furthermore, the weights could also be nega-

tive. Examples that spring to mind where objects could be

PageRanked according to their overall inuence are

r Mathematical articles: if paper i cites paperT then set w i = l'
o Financial assets: if stock i moves up/down a short time after

stockT moves up/down then set ltr = l.
. League tables: if Manchester City beat Manchester United 2-l

at home and 5-3 away, then sot wunrtea,.ity = (2 + 5) - (l + 3)' etc'

In this section, we show how PageRank can be used on a graph

whose nodes are classes offered to undergraduate mathematics

students at the University of Strathclyde. The 'link'information

is provided by the pre-requisite structure between classes' We

took data from

http://www.maths. strath. ac. uk/ungrad/index' html

in July 2003. (A pre-requisite was taken to be a specification on

the class web page of either'Essential'or'Desirable'') We looked

at two interPretations'

RankA: If class i is apre-requisite forclassi, then setltr = l' Here,

votes of confidence feed in to classes that use previously

covered material, so PageRanking can be regarded as finding

the'hardest' or'deepest' classes.

Rank B: If class I is a pre-requisite for classi' then set w,,=l'
Here, votes of confidence are given to classes that get used in

later classes, so PageRanking can be regarded as finding the

most'useful' or'fundamental' classes.

Index Code Class

I

2

3

4

5

6

'7

8

o

10

1l

t2

13

l4

15

16

17

l8

19

20

2l

22

L'

25

26

27

28

29

30

3l

JZ

33

34

35

JO

)t

J6

39

40

4l
An

qJ

44

45

tr 602

11 606

11 611

rt 6t2

11 613

11 700

11 710

11711

tt 7t2

rr '7 t3

lt 721

tt 722

tl'725

11 731

tt 741

ll 801

11 802

1r 811

ll 812

1l 825

11 835

11 841

ll 843

l1 8sr

1l 852

11 853

u 861

tr 862

11 871

l1 891

rr 92r

rr 922

rr 923

tt 924

11 928

rr 929

tt 932

tt 93'l

11 938

11 939

tt 946

tl94'7

ll 948

tt 949

11951

Introduction to Mechanics

Discrete Maths

IT Skills and Maths Software

Maths 1A

Maths 2A

Multivariable Calculus

Finite Dimensional Vector Spaces

Sequences and Series

Newtonian Mechanics

Numerical Analysis 2

Real Variable Calculus

Rigid Body Mechanics

Algebraic Structures

Differential Equations

Vector Calculus

Mathematical AnalYsis 2

Advanced Newtonian Mechanics

Mathematical AnalYsis I

Advanced Rigid BodY Mechanics

Abstract Algebra

Vector Spaces

Complex Analysis I

Numerical Analysis 3

Complex Analysis 2

Fluid Mechanics 1

Numerical Analysis 4

Partial Differential Equations I

Fluid Mechanics 2

Partial Differential Equations 2

Laplace Transforms and Linear Systems

Applications of SPectral TheorY

Applied Functional AnalYsis

Continuum Mechanics I

Continuum Mechanics 2

Numerical Solution of Initial Value PDEs

Modern Methods for Differential Equations

Numerical ApProximation

One Dimensional Dynamical Systems

Higher Dimensional Dynamical Systems

Numerical Solution of Boundary Value PDEs

Waves

Coding Theory

Calculus of Variations

Mathematics of Financial Derivatives

Mathematics in Medicine

Table 2lists the 45 classes that we considered. The class codes

reveal the year of study; I l.6XX, 11.7XX. I l.8XX and I l '9XX
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denoting years 1,2,3, and 4 respectively. To illustrate how the
connectivity structure is defined, the class 11.891, Laplace
Transforms and Linear Systems, which is number 30 on our list,
is specified as a pre-requisite for the class I 1.938, Higher Dimen-
sional Dynamical Systems, which is number 39 on our list. Thus
w:0.:q = I for Rank A, and w:q.:o = I for Rank B.

The PageRank results, normalized so that llrll, = t, are shown in
Figure 5. Not surprisingly, final year classes, located at the right-
hand end of Figure 5, score well when we use Rank A. With this
viewpoint, importance tends to filter up through the years and
the final year has the greatest opportunity to reap the benefit of
incoming links. For what it is worth, Continuum Mechanics 2,
our honours-level elasticity class, gets the highest Rank A score.

The picture reverses when Rank B is used. Here, the earlier year
classes get credit for laying the foundations. However, the top
'usefulness'ranking goes not to a first year class but to the second
year analysis course Sequences and Series. The epsilon-delta
proof is vindicated.

We are not, of course, proposing PageRank in isolation as an
infallible means to judge mathematics classes (especially since the
two classes taught by one of the authors were deemed neither
outstandingly useful nor deep!), rather we simply wish to show
that the algorithm has wide applicability. Any serious implemen-
tation of PageRank would undoubtedly require some applica-
tion-specific issues to be addressed (e.g., in our case, it may be
prudent to treat compulsory classes in a special way), along with
the'dangling page' dilemma.

Discussion
Reasonable estimates suggest that the web currently contains
over3 x l0e pages. This puts PageRanking in the big league of sci-
entific computing [11]. However, while a user's query must be
dealt with in real time, PageRanking is a behind-the-scenes oper-
ation. In practice, Google updates its archive about once a
month, a period during which the 'Google Dance'takes place:
type that phrase in to Google to learn more. As we saw in section
4, the PageRanking task boils down to a large, sparse, linear
solve; a problem for which there are many rival methods. Iden-
tifying promising alternatives to Jacobi is a current research

theme [9, l0]. Iterative methods are natural, since last month's
rankings offer a good starting approximation for this month's,
but issues such as the optimal choice of dand the effect of the ter-
minating criterion must be clarified before concrete comparisons
are to be made.

The original article [15] refers to an alternative, personalized,
version of PageRank, where -F in (4) becomes a more general
rank-one matrix. Here, the teleporting jumps do not land uni-
formly across the web, but are biased towards a user's prefer-
ences. From teleporting it is but a tiny hop to small worldnetworks

[5, 6, 8, 12, l8], another fascinating area where graph theory has
refused to stay in its box.[
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