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As the standard method for solving systems of linear equations, Gaussian
elimination (GE) is one of the most important and ubiquitous numerical algorithms.
However, its successful use relies on understanding its numerical stability
properties and how to organize its computations for efficient execution on modern
computers. We give an overview of GE, ranging from theory to computation. We
explain why GE computes an LU factorization and the various benefits of this
matrix factorization viewpoint. Pivoting strategies for ensuring numerical stability
are described. Special properties of GE for certain classes of structured matrices
are summarized. How to implement GE in a way that efficiently exploits the
hierarchical memories of modern computers is discussed. We also describe block
LU factorization, corresponding to the use of pivot blocks instead of pivot elements,
and explain how iterative refinement can be used to improve a solution computed
by GE. Other topics are GE for sparse matrices and the role GE plays in the TOP500
ranking of the world’s fastest computers.  2011 John Wiley & Sons, Inc. WIREs Comp Stat
2011 3 230–238 DOI: 10.1002/wics.164

INTRODUCTION

Gaussian elimination (GE) is the standard method
for solving a system of linear equations. As such,

it is one of the most ubiquitous numerical algorithms
and plays a fundamental role in scientific computation.

GE was known to the ancient Chinese1 and is
familiar to many school children as the intuitively
natural method of eliminating variables from linear
equations. Gauss used it in the context of the linear
least squares problem.2–4 Undergraduates learn the
method in linear algebra courses, where it is usually
taught in conjunction with reduction to echelon form.
In this linear algebra context, GE is shown to be a tool
for obtaining all solutions to a linear system, for com-
puting the determinant, and for deducing the rank of
the coefficient matrix. However, there is much more
to GE from the point of view of matrix analysis and
matrix computations.

In this article, we survey the many facets of
GE that are relevant to computation—in statistics or
in other contexts. We begin in the next section by
summarizing GE and its basic linear algebraic prop-
erties, including conditions for its success and the key
interpretation of the elimination as LU factorization.
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Then we turn to the numerical properties of LU fac-
torization and discuss pivoting strategies for ensuring
numerical stability. In the section ‘Structured Matri-
ces’, we describe some special results that hold for LU
factorization when the matrix has particular proper-
ties. Computer implementation is then discussed, as
well as a version of GE that uses block pivots. Iterative
refinement—a means for improving the quality of a
computed solution—is also described.

We will need the following notation. The unit
roundoff (or machine precision) is denoted by u; in
IEEE double precision arithmetic it has the value
u = 2−53 ≈ 1.1 × 10−16. We write fl(A) for the result
of rounding the elements of A to floating point
numbers. The ith unit vector ei is the vector that
is zero except for a 1 in the ith element. The notation
1: n denotes the vector [1, 2, . . . , n], while n : − 1: 1
denotes the vector [n, n − 1, . . . , 1]. A(i, j), with i
and j vectors of indices, denotes the submatrix of
A comprising the intersection of the rows specified
by i and the columns specified by j. ‖A‖ denotes
any subordinate matrix norm, and we sometimes
use the ∞-norm, given for A ∈ R

n×n by the formula
‖A‖∞ = max1≤i≤n

∑n
j=1 |aij|.

LU FACTORIZATION
The aim of GE is to reduce a full system of n linear
equations in n unknowns to triangular form using
elementary row operations, thereby reducing a prob-
lem that we cannot solve to one that we can. There
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are n − 1 stages, beginning with A(1) = A ∈ R
n×n,

b(1) = b, and finishing with the upper triangular sys-
tem A(n)x = b(n). At the start of the kth stage we have
converted the original system to A(k)x = b(k), where

k − 1 n − k + 1

A(k) = k − 1
[

A(k)
11 A(k)

12

]
n − k + 1 0 A(k)

22

(1)

with A(k)
11 upper triangular. The kth stage of the elimi-

nation zeros the elements below the pivot element a(k)
kk

in the kth column of A(k) according to the operations

a(k+1)
ij = a(k)

ij − mika(k)
kj , i, j = k + 1: n, (2a)

b(k+1)
i = b(k)

i − mikb(k)
k , i = k + 1: n, (2b)

where the quantities

mik = a(k)
ik /a(k)

kk , i = k + 1: n

are called the multipliers and a(k)
kk is called the pivot.

At the end of the (n − 1)st stage, we have the upper
triangular system Ux ≡ A(n)x = b(n), which is solved
by back substitution. Back substitution for the upper
triangular system Ux = b is the recurrence

xn = bn/unn,

xk =
(

bk −
n∑

j=k+1

ukjxj

)/
ukk, k = n − 1 : −1 : 1.

Much insight into GE is obtained by expressing it
in matrix notation. We can write A(k+1) = MkA(k),
where the Gauss transformation Mk = I − mkeT

k with
mk = [0, . . . , 0, mk+1,k, . . . , mn,k]T. Overall,

Mn−1Mn−2 · · · M1A = A(n) =: U.

By using the fact that M−1
k = I + mkeT

k it is easy to
show that

A = M−1
1 M−1

2 · · · M−1
n−1U

= (I + m1eT
1 )(I + m2eT

2 ) · · · (I + mn−1eT
n−1)U

=
(

I +
n−1∑
i=1

mieT
i

)
U

=


1

m21 1
... m32

. . .
...

...
. . .

mn1 mn2 . . . mn,n−1 1

 U =: LU.

The upshot is that GE computes an LU factorization
A = LU (also called an LU decomposition), where
L is unit lower triangular and U is upper triangu-
lar. The cost of the computation is (2/3)n3 + O(n2)
flops, where a flop denotes a floating point addition,
subtraction, multiplication, or division. There is no
difficulty in generalizing the LU factorization to rect-
angular matrices, though by far its most common use
is for square matrices.

GE may fail with a division by zero dur-
ing formation of the multipliers. The following
theorem shows that this happens precisely when
A has a singular leading principal submatrix of
dimension less than n (Ref 5, Thm. 9.1). We define
Ak = A(1 : k, 1 : k).

Theorem 1 There exists a unique LU factorization
of A ∈ R

n×n if and only if Ak is nonsingular for
k = 1: n − 1. If Ak is singular for some 1 ≤ k ≤ n − 1
then the factorization may exist, but if so it is not
unique.

The conditions of the theorem are in general
difficult to check, but for some classes of structured
matrices they can be shown always to hold; see the
section ‘Structured Matrices’.

The interpretation of GE as an LU factorization
is very important, because it is well established that
the matrix factorization viewpoint is a powerful
paradigm for thinking and computing6,7. In particular,
separating the computation of LU factorization from
its application is beneficial. We give several examples.
First, note that given A = LU, we can write Ax = b1
as LUx = b1, or Lz = b1 and Ux = z; thus x is
obtained by solving two triangular systems. If we
need to solve for another right-hand side b2 we
can just carry out the corresponding triangular
solves, re-using the LU factorization—something
that is not so obvious if we work with the GE
equations (2) that mix up operations on A and b.
Similarly, solving ATy = c reduces to solving the
triangular systems UTz = c and LTy = z using the
available factors L and U. Another example is
the computation of the scalar α = yTA−1x, which
can be rewritten α = yTU−1 · L−1x (or α = yT ·
U−1L−1x) and so again requires just two triangular
solves and avoids the need to invert a matrix
explicitly. Finally, note that if A = LU and A−1 = (bij)
then

u−1
nn = eT

n U−1en = eT
n U−1L−1en = eT

n A−1en = bnn.

Thus the reciprocal of unn is an element of A−1, and
so we have the lower bound ‖A−1‖ ≥ |u−1

nn |, for all the
standard matrix norms.
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A very useful representation of the first stage of
GE is

1 n − 1

A = 1
[

a11 aT
]

n − 1 b C

=
[

1 0
b/a11 In−1

] [
a11 aT

0 C − baT/a11

]
.

The matrix C − baT/a11 is the Schur complement
of a11 in A. More generally, it can be shown that
the matrix A(k)

22 in Eq. (1) can expressed as A(k)
22 =

A22 − A21A−1
11 A12, where Aij ≡ A(1)

ij ; this is the Schur
complement of A11 in A. Various structures of A can
be shown to be inherited by the Schur complement (for
example symmetric positive definiteness and diagonal
dominance), and this enables the proof of several
interesting results about the LU factors (including
some of those in the section ‘Structured Matrices’).

Explicit determinantal formulae exist for the
elements of L and U (see, e.g., Ref 8, p. 11):

�ij = det
(
A([1: j − 1, i], 1: j)

)
det(Aj)

, i ≥ j,

uij = det
(
A(1: i, [1: i − 1, j])

)
det(Ai−1)

, i ≤ j.

Although elegant, these are of limited practical use.

PIVOTING AND NUMERICAL
STABILITY

In practical computation, it is not just zero pivots that
are unwelcome but also small pivots. The problem
with small pivots is that they can lead to large
multipliers mik. Indeed if mik is large then there
is a possible loss of significance in the subtraction
a(k)

ij − mika(k)
kj , with low-order digits of a(k)

ij being lost.
Losing these digits could correspond to making a
relatively large change to the original matrix A. The
simplest example of this phenomenon is for the matrix
A = [

ε

1
1
1

]
, where we assume 0 < ε < u. GE produces[

ε 1
1 1

]
=

[
1 0

1/ε 1

][
ε 1
0 −1/ε + 1

]
= LU.

In floating point arithmetic the factors are approxi-
mated by

fl(L) =
[

1 0
1/ε 1

]
=: L̂,

fl(U) =
[

ε 1
0 −1/ε

]
=: Û,

which would be the exact answer if we changed
a22 from 1 to 0. Hence L̂Û = A + �A with
‖�A‖∞/‖A‖∞ = 1/2 	 u. This shows that for this
matrix GE does not compute the LU factorization of
a matrix close to A, which means that GE is behaving
as an unstable algorithm.

Three different pivoting strategies are available
that attempt to avoid instability. All three strategies
ensure that the multipliers are nicely bounded: |mik| ≤
1, i = k + 1: n.

Partial pivoting. At the start of the kth stage, the
kth and rth rows are interchanged, where

|a(k)
rk | := max

k≤i≤n
|a(k)

ik |.

Thus an element of maximal magnitude in the pivot
column is selected as pivot.

Complete pivoting. At the start of the kth stage
rows k and r and columns k and s are interchanged
where

|a(k)
rs | := max

k≤i,j≤n
|a(k)

ij |;

in other words, a pivot of maximal magnitude is
chosen over the whole remaining submatrix.

Rook pivoting. At the start of the kth stage, rows
k and r and columns k and s are interchanged, where

|a(k)
rs | = max

k≤i≤n
|a(k)

is | = max
k≤j≤n

|a(k)
rj |;

in other words, a pivot is chosen that is the largest in
magnitude in both its column (as for partial pivoting)
and its row. The pivot search is done by repeatedly
looking down a column and across a row for the
largest element in modulus (Figure 1).

Partial pivoting requires O(n2) comparisons in
total. Complete pivoting requires O(n3) comparisons,
which is of the same order of magnitude as the
arithmetic and so is a significant cost. The cost of
rook pivoting is intermediate between the two and
depends on the matrix.

The effect on the LU factorization of the row and
column interchanges in these pivoting strategies can
be captured in permutation matrices P and Q; it can be
shown that PAQ = LU with a unit lower triangular
L and upper triangular U (with Q = I for partial
pivoting). In other words, the triangular factors are
those that would be obtained if all the interchanges
were done at the start of the elimination and GE
without pivoting were used.

In order to assess the success of these pivoting
strategies in improving numerical stability we need a
backward error analysis result. Such a result expresses
the effects of all the rounding errors committed during
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FIGURE 1 | Illustration of how rook pivoting searches for the first
pivot for a particular 6 × 6 matrix (with the positive integer entries
shown). Each dot denotes a putative pivot that is tested to see if it is the
largest in magnitude in both its row and its column.

the computation as an equivalent perturbation on the
original data. Since we can assume P = Q = I without
loss of generality, the result is stated for GE without
pivoting. This is the result of Wilkinson9 (which he
originally proved for partial pivoting); for a modern
proof see Ref 5, Thm. 9.3, Lemma 9.6.

Theorem 2 Let A ∈ R
n×n and suppose GE produces

a computed solution x̂ to Ax = b. Then

(A + �A)̂x = b, ‖�A‖∞ ≤ p(n)ρnu‖A‖∞,

where p(n) is a cubic polynomial and the growth
factor

ρn =
maxi,j,k |a(k)

ij |
maxi,j |aij| .

Ideally, we would like ‖�A‖∞ ≤ u‖A‖∞, which
reflects the uncertainty caused simply by rounding
the elements of A. The growth factor ρn ≥ 1 measures
the growth of elements during the elimination. The
cubic term p(n) arises from many triangle inequalities
in the proof and is pessimistic; replacing it by its
square root gives a more realistic bound, but this term
is in any case outside our control. The message of the
theorem is that GE will be backward stable if ρn is of
order 1. A pivoting strategy should therefore aim to
keep ρn small.

If no pivoting is done ρn can be arbitrarily
large. For example, for the matrix A = [

ε

1
1
1

]
(0 <

ε < u) mentioned at the start of this section, ρn =
1/ε − 1.

The maximum size of the growth factor for the
three pivoting strategies has been the subject of much
research. For partial pivoting, Wilkinson9 showed
that ρn ≤ 2n−1 and that this bound is attainable. In
practice, ρn is almost always of modest size (ρn ≤ 50,
say), but a good understanding of this phenomenon is
still lacking.

For complete pivoting a much smaller bound on
the growth factor was derived by Wilkinson9:

ρn ≤ n1/2(2 · 31/2 · · · n1/(n−1))1/2 ∼ c n1/2n
1
4 log n.

However, this bound usually significantly overesti-
mates the size of ρn. Indeed for many years a con-
jecture that ρn ≤ n for complete pivoting (for real A)
was open. This was finally resolved by Gould10 and
Edelman11, who found an example with ρ13 > 13.
Research on certain aspects of the size of ρn for com-
plete pivoting is ongoing.12 Interestingly, ρn ≥ n for
any Hadamard matrix (a matrix of 1’s and −1’s with
orthogonal columns) and any pivoting strategy.13 For
rook pivoting, the bound ρn ≤ 1.5n

3
4 log n was obtained

by Foster.14

In addition to the backward error, the relative
error ‖x − x̂‖/‖x‖ of the solution x̂ computed in
floating point arithmetic is also of interest. A bound
on the relative error is obtained by applying standard
perturbation bounds for linear systems to Theorem 2
(Ref 5, Ch. 7). A typical bound is

‖x − x̂‖∞
‖x‖∞

≤ cnuκ∞(A)
1 − cnuκ∞(A)

,

where κ∞(A) = ‖A‖∞‖A−1‖∞ is the matrix condition
number with respect to inversion and cn = p(n)ρn.

STRUCTURED MATRICES

A great deal of research has been directed at
specializing GE to take advantage of particular matrix
structures and to proving properties of the LU factors
and the growth factor. We give a just a very brief
overview. For further details of all these properties
and results see Ref 5.

GE without pivoting exploits symmetry, in that
if A is symmetric then so are all the reduced matrices
A(k)

22 in Eq. (1), but symmetry does not by itself
guarantee the existence or numerical stability of the
LU factorization. If A is also positive definite then
GE succeeds (in light of Theorem 1) and the growth
factor ρn = 1, so pivoting is not necessary. However,
it is more common for symmetric positive definite
matrices to use the Cholesky factorization A = RRT,
where R is upper triangular with positive diagonal
elements.15 For general symmetric indefinite matrices
factorizations of the form PAPT = LDLT are used,
where P is a permutation matrix, L is unit lower
triangular, and D is block diagonal with diagonal
blocks of dimension 1 or 2. Several pivoting strategies
are available for choosing P, of which one is a
symmetric form of rook pivoting.
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If A is diagonally dominant by rows, that is,

n∑
j=1
j �=i

|aij| ≤ |aii|, i = 1: n,

or A is diagonally dominant by columns (that is, AT is
diagonally dominant by rows) then it is safe not to use
interchanges: the LU factorization without pivoting
exists and the growth factor satisfies ρn ≤ 2.

If A has bandwidth p, that is, aij = 0 for
|i − j| > p, then in an LU factorization L and U also
have bandwidth p (�ij = 0 for i > j + p and uij = 0 for
j > i + p). With partial pivoting the bandwidth is not
preserved, but it is nevertheless true that in PA = LU
the upper triangular factor U has bandwidth 2p and
L has at most p + 1 nonzeros per column; moreover,
ρn ≤ 22p−1 − (p − 1)2p−2. Tridiagonal matrices (p =
1) form an important special case. For general sparse
matrices see Box 1.

BOX 1

SPARSE MATRICES

A matrix is sparse if it has a sufficiently large
number of zero entries that it is worth taking
advantage of them in storing the matrix and in
computing with it. When GE is applied to a sparse
matrix it can produce fill-in, which occurs when a
zero entry becomes nonzero. Depending on the
matrix there may be no fill-in (as for a tridiagonal
matrix), total fill-in (e.g., for a sparse matrix with
a full first row and column), or something in-
between. Various techniques are available for
re-ordering the rows and columns in order to
reduce fill-in. Since numerical stability is also
an issue, these techniques must be combined
with a strategy for ensuring that the pivots
are sufficiently large. Modern techniques allow
sparse GE to be successfully applied to extremely
large matrices. For an up to date treatment that
includes C codes see Ref 32. When the necessary
memory or computation time for GE to solve
Ax = b becomes prohibitive we must resort to
iterative methods, which typically require just
the ability to compute matrix–vector products
with A (and possibly its transpose).33

A matrix is totally nonnegative if the determi-
nant of every square submatrix is nonnegative. The
Hilbert matrix (1/(i + j − 1)) is an example of such
a matrix. If A is nonsingular and totally nonnegative
then it has an LU factorization A = LU in which L and
U are totally nonnegative, so that in particular L and

U have nonnegative elements. Moreover, the growth
factor ρn = 1. More importantly, for such matrices it
can be shown that a much stronger componentwise
form of Theorem 2 holds with |�aij| ≤ cnu|aij| for all
i and j, where cn ≈ 3n.

ALGORITHMS

In principle, GE is computationally straightforward.
It can be expressed in pseudocode as follows:

for k = 1 : n − 1
for j = k : n

for i = k + 1 : n
mik = aik/akk

aij = aij − mikakj

end
end

end

Here, pivoting has been omitted, and at the end of
the computation the upper triangle of A contains
the upper triangular factor U and the elements of L
are the mij. Incorporating partial pivoting, and form-
ing the permutation matrix P such that PA = LU, is
straightforward.

There are 3! ways of ordering the three nested
loops in this pseudocode, but not all are of equal
efficiency for computer implementation. The kji order-
ing shown above forms the basis of early Fortran
implementations of GE such as those in Refs 16, 17,
and the LINPACK package18—the inner loop tra-
verses the columns of A, which matches the order in
which Fortran stores the elements of two-dimensional
arrays. The hierarchical computer memories prevalent
from the 1980s onwards led to the need to modify
implementations of GE in order to maintain good effi-
ciency: now the loops must be broken up into pieces,
leading to partitioned (or blocked) algorithms. For a
given block size r > 1, we can derive a partitioned
algorithm by writing[

A11 A12
A21 A22

]
=

[
L11 0
L21 In−r

] [
Ir 0
0 S

]
×

[
U11 U12
0 In−r

]
,

where A11, L11, U11 ∈ R
r×r. Ignoring pivoting, the

idea is to compute an LU factorization A11 =
L11U11 (by whatever means), solve the multiple
right-hand side triangular systems L21U11 = A21 and
L11U12 = A12 for L21 and U12 respectively, form
S = A22 − L21U12, and apply the same process to
S to obtain L22 and U22. The computations yielding
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L21, U12, and S are all matrix–matrix operations and
can be carried out using level 3 BLAS,19,20 for which
highly optimized implementations are available for
most machines. The optimal choice of the block size r
depends on the particular computer architecture. It is
important to realize that this partitioned algorithm is
mathematically equivalent to any other variant of GE:
it does the same operations in a different order, but
one that reduces the amount of data movement among
different levels of the computer memory hierarchy. In
an attempt to extract even better performance recur-
sive algorithms of this form with r ≈ n/2 have also
been developed.21,22

We mention two very active areas of current
research in GE, and more generally in dense lin-
ear algebra computations, both of which are aiming
to extend the capabilities of the state of the art
package LAPACK23 to shared memory computers
based on multicore processor architectures. The first
is aimed at developing parallel algorithms that run
efficiently on systems with multiple sockets of mul-
ticore processors. A key goal is to minimize the
amount of communication between processors, since
on such evolving architectures communication costs
are increasingly significant relative to the costs of float-
ing point arithmetic. A second area of research aims to
exploit graphics processing units (GPUs) in conjunc-
tion with multicore processors. GPUs have the ability
to perform floating point arithmetic at very high paral-
lelism and are relatively inexpensive. Current projects
addressing these areas include the PLASMA (http://
icl.cs.utk.edu/plasma) and MAGMA (http://icl.cs.utk.
edu/magma) projects. Representative papers are Refs
24, 25. Further activity is concerned with algorithms
for distributed memory machines, aiming to improve
upon those in the ScaLAPACK library26; see, for
example, Ref 27.

See Box 2 for the role GE plays in the TOP500
ranking of the world’s fastest computers.

BOX 2

TOP500

The TOP500 list (http://www.top500.org)
ranks the world’s fastest computers by their
performance on the LINPACK benchmark,34

which solves a random linear system Ax = b by
an implementation of GE for parallel computers
written in C and MPI. Performance is measured
by the floating point execution rate counted in
floating point operations (flops) per second. The
user is allowed to tune the code to obtain the
best performance, by varying parameters such as

the dimension n, the block size, the processor
grid size, and so on. However, the computed
solution x̂ must produce a small residual in order
for the result to be valid, in the sense that
‖b − Ax̂‖∞/(u‖A‖∞‖x‖∞) is of order 1.

This benchmark has its origins in the
LINPACK project,18 in which the performance
of contemporary machines was compared by
running the LINPACK GE code dgefa on a
100 × 100 system.

BLOCK LU FACTORIZATION

At each stage of GE a pivot element is used to eliminate
elements below the diagonal in the pivot column. This
notion can generalized to use a pivot block to eliminate
all elements below that block. For example, consider
the factorization

A =


0 1 1 1

−1 1 1 1
−2 3 4 2
−1 2 1 3



=


1 0 0 0
0 1 0 0
1 2 1 0
1 1 0 1




0 1 1 1
−1 1 1 1

0 0 1 −1
0 0 −1 1


≡ L1U1.

GE without pivoting fails on A because of the zero
(1, 1) pivot. The displayed factorization corresponds
to using the leading 2 × 2 principal submatrix of A to
eliminate the elements in the (3 : 4, 1 : 2) submatrix. In
the context of a linear system Ax = b, we have effec-
tively solved for the variables x1 and x2 in terms of x3
and x4 and then substituted for x1 and x2 in the last
two equations. This is the key idea underlying block
Gaussian elimination, or block LU factorization. In
general, for a given partitioning A = (Aij)m

i,j=1 with the
diagonal blocks Aii square (but not necessarily all of
the same dimension), a block LU factorization has the
form

A =


I

L21 I
...

. . .

Lm1 . . . Lm,m−1 I



×


U11 U12 . . . U1m

U22
...

. . . Um−1,m
Umm

 ≡ LU,
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where L and U are block triangular but U is not nec-
essarily triangular. This is in general different from
the usual LU factorization. A less restrictive analog of
Theorem 1 holds (Ref 5, Thm. 13.2).

Theorem 3 The matrix A = (Aij)m
i,j=1 ∈ R

n×n has a
unique block LU factorization if and only if the first
m − 1 leading principal block submatrices of A are
nonsingular.

The numerical stability of block LU factorization
is less satisfactory than for the usual LU factorization.
However, if A is diagonally dominant by columns, or
block diagonally dominant by columns in the sense
that

‖A−1
jj ‖−1 −

n∑
i=1
i �=j

‖Aij‖ ≥ 0, j = 1: n,

then the factorization can be shown to be numerically
stable (Ref 5, Ch. 13).

Block LU factorization is motivated by the
desire to maximize efficiency on modern computers
through the use of matrix–matrix operations. It has
also been widely used for block tridiagonal matrices
arising in the discretization of partial differential
equations.

ITERATIVE REFINEMENT

Iterative refinement is a procedure for improving
a computed solution x̂ to a linear system Ax =
b—usually one computed by GE. The process repeats
the three steps

1. Compute r = b − Ax̂.

2. Solve Ad = r.

3. Update x̂ ← x̂ + d.

In the absence of rounding errors, x̂ is the exact solu-
tion to the system after one iteration of the three
steps. In practice, rounding errors vitiate all three
steps and the process is iterative. For x̂ computed by
GE, the system Ad = r is solved using the LU factor-
ization already computed, so each iteration requires
only O(n2) flops.

Iterative refinement was popular in the 1960s
and 1970s, when it was implemented with the resid-
ual r computed at twice the working precision, which
we call mixed precision iterative refinement. On some
machines of that era it was possible to accumulate
inner products in extra precision in hardware, making
implementation of the process easy. From the 1980s

onward, computing extra precision residuals became
problematic and this spurred research into fixed pre-
cision iterative refinement, where only one precision
is used throughout. In the last few years mixed pre-
cision iterative refinement has come back into favor,
because modern processors either have extra precision
registers or can perform arithmetic in single precision
much faster than in double precision but also because
standardized routines for extra precision computation
are now available.28–30

The following theorem summarizes the benefits
iterative refinement brings to the forward error (Ref 5,
Sect. 12.1).

Theorem 4 Let iterative refinement be applied to
the nonsingular linear system Ax = b in conjunction
with GE with partial pivoting. Provided A is not
too ill conditioned, iterative refinement reduces the
forward error at each stage until it produces an x̂ for
which

‖x − x̂‖∞
‖x‖∞

≈
{

u, for mixed precision,
cond(A, x)u, for fixed precision,

where cond(A, x) = ‖ |A−1‖A‖x| ‖∞/‖x‖∞.

This theorem tells only part of the story. Under
suitable assumptions, iterative refinement leads to a
small componentwise backward error, as first shown
by Skeel31—even for fixed precision refinement. For
the definition of componentwise backward error and
further details, see Ref 5, Sect. 12.2.

CONCLUSION

GE with partial pivoting continues to be the standard
numerical method for solving linear systems that are
not so large that considerations of computational cost
or storage dictate the use of iterative methods. The first
computer program for GE with partial pivoting was
probably that of Wilkinson35 (his code implemented
iterative refinement too). It is perhaps surprising that
it is still not understood why the numerical stability
of this method is so good in practice, or equivalently
why large element growth with partial pivoting is not
seen in practical computations.

This overview has omitted a number of GE-
related topics, including

• row or column scaling (or equilibration),

• Gauss–Jordan elimination, in which at each stage
of the elimination elements both above and
below the diagonal are eliminated, and which
is principally used as a method for matrix
inversion,
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• variants of GE motivated by parallel computing,
such as pairwise elimination, in which elimina-
tions are carried out between adjacent rows only,

• analyzing the extent to which (when computed
in floating point arithmetic) an LU factorization
reveals the rank of A,

• the sensitivity of the LU factors to perturbations
in A.

For more on these topics see Ref 5 and the references
therein.
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