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This article aimed at a general audience of computational scientists, surveys
the Cholesky factorization for symmetric positive definite matrices, covering
algorithms for computing it, the numerical stability of the algorithms, and updating
and downdating of the factorization. Cholesky factorization with pivoting for
semidefinite matrices is also treated.  2009 John Wiley & Sons, Inc. WIREs Comp Stat 2009 1
251–254

INTRODUCTION

A symmetric n × n matrix A is positive definite if
the quadratic form xTAx is positive for all non-

zero vectors x or, equivalently, if all the eigenvalues
of A are positive. Positive definite matrices have
many important properties, not least that they can
be expressed in the form A = XTX for a non-singular
matrix X. The Cholesky factorization is a particular
form of this factorization in which X is upper
triangular with positive diagonal elements; it is usually
written as A = RTR or A = LLT and it is unique. In
the case of a scalar (n = 1), the Cholesky factor R is
just the positive square root of A. However, R should,
in general, not be confused with the square roots of
A, which are the matrices Y such that A = Y2, among
which there is a unique symmetric positive definite
square root, denoted A1/2 (Section 1.7 in Ref 1).

The Cholesky factorization (sometimes called
the Cholesky decomposition) is named after André-
Louis Cholesky (1875–1918), a French military officer
involved in geodesy.2 It is commonly used to solve the
normal equations ATAx = ATb that characterize the
least squares solution to the overdetermined linear
system Ax = b.

A variant of Cholesky factorization is the
factorization A = LDLT, where L is unit lower
triangular (i.e., has unit diagonal) and D is diagonal.
This factorization exists and is unique for positive
definite matrices. If D is allowed to have non-positive
diagonal entries, the factorization exists for some (but
not all) indefinite matrices. When A is positive definite
the Cholesky factor is given by R = D1/2LT.
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COMPUTATION

The Cholesky factorization can be computed by a
form of Gaussian elimination that takes advantage of
the symmetry and definiteness. Equating (i, j) elements
in the equation A = RTR gives

j = i : aii =
i∑

k=1

r2
ki,

j > i : aij =
i∑

k=1

rkirkj. (1)

These equations can be solved to yield R a column at
a time, according to the following algorithm:

for j = 1: n
for i = 1: j − 1

rij = (aij − ∑i−1
k=1 rkirkj)/rii

end
rjj = (ajj − ∑j−1

k=1 r2
kj)

1/2

end

The positive definiteness of A guarantees that the
argument of the square root in this algorithm is
always positive and hence that R has a real, positive
diagonal. The algorithm requires n3/3 + O(n2) flops
and n square roots, where a flop is any of the four
elementary scalar arithmetic operations +, −, ∗, and/.

The algorithm above is just one of many ways
of arranging Cholesky factorization and can be
identified as the ‘jik’ form based on the ordering
of the indices of the three nested loops. There
are five other orderings, yielding algorithms that
are mathematically equivalent but that have quite
different efficiency for large dimensions depending
on the computing environment, by which we mean
both the programming language and the hardware. In
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modern libraries such as LAPACK,3 the factorization
is implemented in partitioned form, which introduces
another level of looping in order to extract the best
performance from the memory hierarchies of modern
computers. To illustrate, we describe a partitioned
Cholesky factorization algorithm. For a given block
size r, we can write

[
A11 A12

AT
12 A22

]
=

[
RT

11 0
RT

12 In−r

] [
Ir 0
0 S

][
R11 R12
0 In−r

]
, (2)

where A11 and R11 are r × r. One step of the algorithm
consists of computing the Cholesky factorization
A11 = RT

11R11, solving the multiple right-hand side
triangular system RT

11R12 = A12 for R12, and then
forming the Schur complement S = A22 − RT

12R12; this
procedure is repeated on S. This partitioned algorithm
does precisely the same arithmetic operations as
any other variant of Cholesky factorization, but it
does the operations in an order that permits them
to be expressed as matrix operations. The block
operations defining R12 and S are level 3 BLAS
operations,4 for which efficient computational kernels
are available on most machines. In contrast, a block
LDLT factorization (the most useful form of block
factorization for a symmetric positive definite matrix)
has the form A = LDLT, where

L =




I
L21 I
...

. . .

Lm1 . . . Lm,m−1 I


, D = diag(Dii), (3)

where the diagonal blocks Dii are, in general,
full matrices. This factorization is mathematically
different from a Cholesky or LDLT factorization (in
fact, for an indefinite matrix, it may exist when the
factorization with 1 × 1 blocks does not). It is of most
interest when A is block tridiagonal5 [Chapter 13].

Once a Cholesky factorization of A is available,
it is straightforward to solve a linear system Ax = b.
The system is RTRx = b, which can be solved in two
steps, costing 2n2 flops:

1. Solve the lower triangular system RTy = b,

2. Solve the upper triangular system Rx = y.

NUMERICAL STABILITY

Rounding error analysis shows that Cholesky factor-
ization has excellent numerical stability properties.
We will state two results in terms of the vector

2-norm ‖x‖2 = (xTx)1/2 and the corresponding sub-
ordinate matrix norm ‖A‖2 = maxx�=0 ‖Ax‖2/‖x‖2,
where for symmetric A we have ‖A‖2 = max{|λi| :
λi is an eigenvalue of A}. If the factorization runs to
completion in floating point arithmetic, with the argu-
ment of the square root always positive, then the
computed R̂ satisfies

R̂TR̂ = A + �A1, ‖�A1‖2 ≤ c1n2u‖A‖2, (4)

where the subscripted c denotes a constant of order 1
and u is the unit roundoff (or machine precision).
Most modern computing environments use IEEE
double precision arithmetic, for which u = 2−53 ≈
1.1 × 10−16. Moreover, the computed solution x̂ to
Ax = b satisfies

(A + �A2)̂x = b, ‖�A2‖2 ≤ c2n2u‖A‖2. (5)

This is a backward error result that can be interpreted
as saying that the computed solution x̂ is the
true solution to a slightly perturbed problem. The
factorization is guaranteed to run to completion if
c3n3/2κ2(A)u < 1, where κ2(A) = ‖A‖2‖A−1‖2 ≥ 1 is
the matrix condition number with respect to inversion.
By applying standard perturbation theory for linear
systems to Eq. (5), a bound is obtained for the forward
error:

‖x − x̂‖2

‖x‖2
≤ c2n2κ2(A)u

1 − c2n2κ2(A)u
. (6)

The excellent numerical stability of Cholesky fac-
torization is essentially due to the equality ‖A‖2 =
‖RTR‖2 = ‖R‖2

2, which guarantees that R is of
bounded norm relative to A. For proofs of these
results and more refined error bounds, see Ref 5
[Chapter 10].

SEMIDEFINITE MATRICES

A symmetric matrix A is positive semidefinite if the
quadratic form xTAx is non-negative for all x; thus
A may be singular. For such matrices a Cholesky
factorization A = RTR exists, now with R possibly
having some zero elements on the diagonal, but the
diagonal of R may not display the rank of A. For
example,

A =

 1 −1 1

−1 1 −1
1 −1 2


 =


 1 0 0

−1 0 0
1 1 0





1 −1 1

0 0 1
0 0 0




= RTR, (7)
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and A has rank 2 but R has only one non-zero diagonal
element. However, with P, the permutation matrix
comprising the identity matrix with its columns in
reverse order, PTAP = RT

1 R1, where

R1 =




√
2 − 1√

2
1√
2

0 1√
2

− 1√
2

0 0 0


 . (8)

More generally, any symmetric positive semidefinite
A has a factorization

PTAP = RTR, R =
[

R11 R12
0 0

]
, (9)

where P is a permutation matrix, R11 is r × r
upper triangular with positive diagonal elements,
and rank(A) = r. This factorization is produced by
using complete pivoting, which at each stage permutes
the largest diagonal element in the active submatrix
into the pivot position. The following algorithm
implements Cholesky factorization with complete
pivoting and overwrites the upper triangle of A with
R. It is a ‘kji’ form of the algorithm.

Set pi = 1, i = 1: n.
for k = 1: n

Find s such that ass = maxk≤i≤n aii.
Swap rows and columns k and s of A

and swap pk and ps.
akk = √

akk
for j = k + 1: n

akj = akj/akk
end
for j = k + 1: n

for i = k + 1: j
aij = aij − akiakj

end
end

end
Set P to the matrix whose jth column

is the pjth column of I.

An efficient implementation of this algorithm that uses
level 3 BLAS6 is available in LAPACK Version 3.2.
Complete pivoting produces a matrix R that satisfies
the inequalities

r2
kk ≥

min(j,r)∑
i=k

r2
ij, j = k + 1: n, k = 1: r, (10)

which imply r11 ≥ r22 ≥ · · · ≥ rnn.
An important use of Cholesky factorization is for

testing whether a symmetric matrix is positive definite.

The test is simply to run the Cholesky factorization
algorithm and declare the matrix positive definite if
the algorithm completes without encountering any
negative or zero pivots and not positive definite
otherwise. This test is much faster than computing
all the eigenvalues of A, and it can be shown to
be numerically stable: the answer is correct for a
matrix A + �A with �A satisfying Eq. (4).7 When
an attempted Cholesky factorization breaks down
with a non-positive pivot, it is sometimes useful
to compute a vector p such that pTAp ≤ 0. In
optimization, when A is the Hessian of an underlying
function to be minimized, p is termed a direction of
negative curvature. Such a p is the first column of the
matrix

Z =
[
R−1

11 R12
−I

]
, (11)

where
[
R11 R12

]
is the partially computed Cholesky

factor, and this choice makes pTAp equal to the
next pivot, which is non-positive by assumption.
This choice of p is not necessarily the best that
can be obtained from Cholesky factorization, either
in terms of producing a small value of pTAp
or in terms of the effects of rounding errors on
the computation of p. Indeed this is a situation
where Cholesky factorization with complete pivoting
can profitably be used. For more details, see
Ref 8.

UPDATING AND DOWNDATING
In some applications, it is necessary to modify a
Cholesky factorization A = RTR after a rank 1 change
to the matrix A. Specifically, given a vector x such that
A − xxT is positive definite we may need to compute R̃
such that A − xxT = R̃TR̃ (the downdating problem),
or given a vector y we may need to compute R̃ such
that A + yyT = R̃TR̃. For the updating problem, we
can write

A + yyT = RTR + yyT = [
RT y

] [
R
yT

]

= [
RT y

]
QT · Q

[
R
yT

]
, QTQ = I. (12)

We aim to use the orthogonal matrix Q to restore
triangularity; thus, for n = 3, for example, we want
Q to effect, pictorially,

Q




× × ×
0 × ×
0 0 ×
× × ×


 =




× × ×
0 × ×
0 0 ×
0 0 0


 , (13)
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where × denotes a non-zero element. This can be
achieved by taking Q as a product of suitably chosen
Givens rotations. The downdating problem is more
delicate because of possible cancellation in removing

xxT from A, and several methods are available, all
more complicated than the updating procedure out-
lined above. For more on updating and downdating,
see Ref 9 [Section 3.3].
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